
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306017096

A machine learning based approach for intrusion prevention using honeypot

interaction patterns as training data

Thesis · May 2016

DOI: 10.13140/RG.2.1.1996.0561

CITATIONS

3
READS

2,127

1 author:

Some of the authors of this publication are also working on these related projects:

Leveraging Virtual Reality Technology to Effectively Explore 3D Graphs View project

Daniel Zammit

University of Malta

2 PUBLICATIONS 3 CITATIONS

SEE PROFILE

All content following this page was uploaded by Daniel Zammit on 10 August 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/306017096_A_machine_learning_based_approach_for_intrusion_prevention_using_honeypot_interaction_patterns_as_training_data?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/306017096_A_machine_learning_based_approach_for_intrusion_prevention_using_honeypot_interaction_patterns_as_training_data?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Leveraging-Virtual-Reality-Technology-to-Effectively-Explore-3D-Graphs?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Zammit-6?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Zammit-6?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Malta?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Zammit-6?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Daniel-Zammit-6?enrichId=rgreq-71f7cf117b360942f059cdd303ece0e6-XXX&enrichSource=Y292ZXJQYWdlOzMwNjAxNzA5NjtBUzozOTM0Mzc3Mjg3ODg0ODBAMTQ3MDgxNDI3MjE4MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

University of Malta

A machine learning based approach for intrusion prevention using

honeypot interaction patterns as training data

Daniel Zammit

A dissertation submitted in partial fulfilment of the requirements of the Degree
of Bachelor of Science (Honours) in Business and Information

Technology at the University of Malta

May 2016

ii

Abstract

The work conducted in this dissertation revolves around the study of various intrusion

detection systems and techniques that are used for detection. Subsequently, a prototype is

developed having supervised machine learning capabilities that can be deployed on a

network and used by experts to help prevent attacks. The benefits of such an approach is

the ability for the system to continue learning with the aid of a supervisor, eliminating the

need to continuously update databases used by traditional intrusion detection systems.

A platform containing several honeypots was installed on a virtual machine with unrestricted

Internet access. The honeypots were used to collect interaction data generated by attackers.

Cowrie, a medium interaction honeypot, was chosen for the prototype. Scripts were written

to process this data into a recognisable format by WEKA, an open source machine learning

software. The classification file generated by this tool is uploaded to a web server and used

to present the result in a simple and concise manner.

The intrusion detection prototype was validated by testing several components of the

system. Tests targeted the operation of the platform, the data gathering process, the

classification output and web interface. The interface hosted on the web server provides the

user with real time status of the platform. The result is a functioning intrusion detection

system that relies on machine learning techniques to classify traffic generated from honeypot

interactions, with its benefits and limitations.

Keywords: Network Intrusion Detection System; Honeypots; Machine Learning; Web

Interface

iii

Acknowledgements

My deepest gratitude goes first and foremost to my supervisor and mentor, Dr. Godwin

Caruana, without whose help this work would not have been possible. His knowledge and

insight on this research area were invaluable for the completion of this project. He provided

me with immense encouragement throughout our regular meetings providing continuous

feedback and guiding the direction of this work.

I would like to thank my classmates for an unforgettable experience at University. Special

thanks go to Andrew Grech who helped me out when the going was tough. I would also like

to thank Marco Ochse for his continuous online support during the development of the

prototype.

Last but not least, I would like to thank my family for their tremendous support and

encouragement during these years but especially while writing this dissertation.

iv

Reading furnishes the mind only with materials of knowledge.

It is thinking that makes what we read ours.

John Locke

v

Declaration of Authenticity

Student’s ID: 415594M

Student’s Name and Surname: Daniel Zammit

Course: Bachelor of Science (Honours) Business and Information Technology

Title of Dissertation: A machine learning based approach for intrusion prevention using

honeypot interaction patterns as training data

I hereby declare that I am the legitimate author of this Dissertation and that it is my original

work. No portion of this work has been submitted in support of an application for another

degree or qualification of this or any other university or institution of higher education. I hold

the University of Malta harmless against any third party claims with regard to copyright

violation, breach of confidentiality, defamation and any other third party right infringement.

Word Count: 11765 (excluding headers and tables)

Daniel Zammit May 2016

vi

Table of Contents

Abstract ..ii

Acknowledgements ... iii

Declaration of Authenticity .. v

List of Tables .. ix

List of Appendices ... xi

Chapter 1. Introduction ... 1

1.1 The Necessity of Machine Learning in Network Security 1

1.2 Objectives of this research .. 4

Chapter 2. Literature Review ... 6

2.1 Host vs Network Intrusion Detection Systems ... 7

2.1.1 Host Intrusion Detection Systems ... 7

2.1.2 Network Intrusion Detection Systems .. 9

2.1.3 Industrial Deployment ... 11

2.2 Honeypot Implementations ... 12

2.2.1 Honeypot Classification .. 12

2.2.2 Applications .. 14

2.3 Augmented Signature Based IDS .. 15

2.3.1 Machine Learning .. 15

2.3.2 Transition from datasets to honeypots ... 16

2.4 Summary .. 17

vii

Chapter 3. Methodology ... 18

3.1 Design and Prototype Development .. 18

3.1.1 UML Diagrams ... 18

3.1.2 Environment Setup .. 19

3.1.3 Software Development ... 20

3.2 Testing .. 21

Chapter 4. Prototype Architecture .. 24

4.1 Prototype Design .. 27

4.1.1 Ubuntu Server UML Diagrams .. 27

4.1.2 Web Host Server UML Diagrams ... 32

4.2 Prototype Development ... 34

4.2.1 Hardware Implementation .. 34

4.2.2 Software Implementation ... 35

4.2.3 Prototype Functionality ... 38

4.3 Conceptual Model ... 44

4.4 Software Testing ... 45

4.4.1 T-Pot Honeypot Platform .. 45

4.4.2 Script Data Processing ... 46

4.4.3 Machine Learning .. 48

4.4.4 Web Interface ... 48

Chapter 5. Conclusion and Future Work ... 50

5.1 Conclusion ... 50

viii

5.2 Limitations .. 51

5.3 Future Work ... 51

References ... 52

ix

List of Tables

Table 1 - Honeypot levels of interaction .. 13

Table 2 - Software used during development ... 23

Table 3 - Host Machine Specifications... 34

Table 4 - Virtual Machine Specifications ... 35

Table 5 - J48 Pseudocode ... 42

x

List of Figures

Figure 1 - General System Diagram... 26

Figure 2 - Ubuntu Server Class Diagram .. 28

Figure 3 - Ubuntu Server State Machine Diagram ... 31

Figure 4 - Web Server Class Diagram ... 32

Figure 5 - Web Server State Machine Diagram ... 33

Figure 6 - Kibana Dashboard .. 36

Figure 7 - Enabling log persistence .. 38

Figure 8 - Retrieving Logs .. 39

Figure 9 - Extracting last entries ... 39

Figure 10 - Feature Selection .. 40

Figure 11 - Training File ... 41

Figure 12 - Process Automation using crontab .. 43

Figure 13 - Prototype OSI .. 44

Figure 14 - Platform Test Script .. 45

Figure 15 - Cowrie Visualisation on Kibana .. 46

Figure 16 - Cowrie log entries ... 47

Figure 17 - Cowrie Machine Learning test file .. 47

Figure 18 - Classification Result file ... 48

Figure 19 - Benevolent Traffic ... 49

Figure 20 - Malicious Traffic .. 49

file:///C:/Users/Daniel/Google%20Drive/Business%20and%20IT/Dissertation/Dissertation%20Final.docx%23_Toc451902291

xi

List of Appendices

Appendix A - Scripts ... 56

Appendix B - Web Interface ... 72

1

Chapter 1. Introduction

Business entities in government and private sectors depend on large volumes of information.

Millions even billions of data packets enter through the company’s network infrastructure and

pass from a multitude of devices including tablets, workstations, smartphones, terminals and

most importantly servers. A server can be defined as a software which handles a large

quantity of queries from the client and is responsible for managing resources such as central

processing unit (CPU) time and random access memory between devices connected to it. It

can be set up on a single computer for small networks or a cluster of machines known as

server racks for large corporations. In the modern world, there was a shift from using servers

to delegate workload on machines to what is known as the client-server model which is

becoming increasingly popular (Oluwatosin, 2014). The largest network in the world, the

Internet, is made of smaller networks that make use of client-server communication. It is

used continuously by peers and organisations alike to share information with clients,

suppliers and other business partners. Critical information such as client purchase

behaviour, transaction history, client personal details and other sensitive information are all

stored on servers.

1.1 The Necessity of Machine Learning in Network Security

Servers and databases are primary targets for people who want to access data for malicious

purposes. Hackers are people with a unique skillset, capable of infiltrating any system which

is vulnerable or exploitable in order to use it for their purposes (Kintana, 2006). There are

two types of hackers; ethical and non-ethical hackers, also referred to a white and black hat

respectively. An ethical hacker is employed by a company to try and break into their system

in order to find means to access that system without triggering security alerts, also known as

backdoors, or other unknown weaknesses. On the other hand, a black hat is any person with

a good knowledge of hacking tools which they use in order to break into a system without

authorisation. Companies spend large amounts of human and financial resources trying to

2

build defensive mechanisms in order to hold off unauthorised access. Ethical hackers help in

the design of such mechanisms. There are various protection methods that can be deployed

in a company’s internal network, which is known as the intranet, to secure a company’s

information assets.

As is clear in the literature, in 1983 network security became questionable following attacks

targeted at a hospital, bank and a nuclear weapons laboratory in the United States (Elmer-

DeWitt et al., 1983). Attackers used home computers to infiltrate and install malware, harmful

software designed to compromise a system, which was used to steal user credentials upon

the creation of a new user record. The details were immediately sent back to the attacker.

Fortunately, the technology that connected us back in the day was still limited to a few

machines, which made it simpler to find and apprehend the culprits. Nowadays, networks

have grown much bigger than anyone could have imagined back in the early days. The

Internet has allowed us to access digitised information created by people and corporations

alike. According to Price, “90 percent of all data ever produced by humans has been made in

the last two years” (Price, 2015). Nowadays, Internet users and business entities are being

targeted everyday by attackers demanding huge sums of money to lift the restriction from the

targeted machine. This type of attack is known as ransomware. In a recent study, conducted

by PwC and commissioned by the British Minister for Culture and the Digital Economy, Ed

Vaizey, a shocking discovery was made: 90 percent of large organisations and 74 percent of

small businesses were breached in 2015 (PwC, 2015). With regards to large businesses, 69

percent were infiltrated from outside the company’s network. Furthermore, the study also

found that distributed denial of service attacks were on the low, following the downward trend

forecasted in previous years. Unfortunately, this led to an increase in more sophisticated

techniques to hinder daily business operations.

So companies and researchers started to design and develop intrusion detection systems

that are capable of detecting misuse or alternations to a system. These systems started to

be deployed on both hosts and networks, to analyse certain resources that can be used to

3

flag unknown malicious behaviour. An example of a network intrusion detection

system(NIDS) is Snort, which can be deployed in small or medium sized networks (Roesch,

1999). It is capable of sniffing packets and logging on the network to identify malicious traffic

using pattern matching against a defined rule set. On the other hand, a host based intrusion

detection system(HIDS), such as OSSEC, is a multi-platform open source monitoring tool

capable of performing integrity checks on files, monitor Windows registry and analyse logs in

a real time environment on a machine’s operating system (Hay et al., 2008). Both OSSEC

and Snort are designed to alert a supervisor when a particular pattern or signature matches

with a record of known user created signatures of previous attacks, stored in a database.

Although such systems are accurate when identifying a known pattern, a problem arises

when new attack patterns are used to infiltrate a system. Thus the database needs to be

continuously updated. Another technique, known as anomaly based detection does not

make use of rules. Instead, the person setting up the system sets a base line for benevolent

user behaviour and any deviations from that known user behaviour will be flagged by the

system as possibly malicious (García-Teodoro et al., 2009). The disadvantage in anomaly

based systems is the high false positive rate. Attackers can also learn how to mimic a normal

user’s behaviour, thus going under the radar.

In light of this, there is a need for new techniques to capture intruders while mitigating, as

much as possible, the disadvantages brought by signature and anomaly based detection

systems. Researchers have proposed new techniques that either build on existing solutions

or are completely innovative. The literature shows that in a real world environment,

companies make use of both host and network based intrusion detection system, and that

some research is focused on these hybrid solutions. In the last few years, scientists have

started to experiment and propose new methods of applying machine learning techniques to

single out intruders in either a host or a network environment. A machine learning aided

intrusion detection system has the ability to teach itself over time. The only limit is the

amount of data such a system is given to be trained on. Depending on the classification

methods utilised and the data inputted for training, the system will be able to classify

intruders with more accuracy and less false positives.

4

1.2 Objectives of this research

The main objective of the dissertation is to propose a system that is capable of capturing and

extracting attack data using honeypots. This will be required for the classification of network

generated traffic by applying machine learning techniques.

To begin with, the research conducted in this work firstly focuses on the two types of

intrusion detection systems mentioned earlier. Host based IDS and network based IDS are

reviewed, outlining the differences between them. Moreover, many applications and

techniques researchers implemented using these systems are discussed, highlighting the

main scientific contributions in this field. Also, in the second section of the literature,

honeypots are defined. Most work in this field of research has been published in the last

decade or so. Various scientific papers are presented, where these mechanisms have

proven to be an ideal tool for capturing the fundamental data generated during attacks

(Bringer et al., 2012). The last section of the literature review is dedicated to research related

with the improvement on existing signature based IDS and an overview of machine learning

in this field.

The software selection for the prototype is justified and issues arising from real life

deployment in an organisation are discussed. The way the technology used is set up, the

number of issues in deployment should be relatively small. This is discussed in more detail in

the methodology. A prototype architecture is devised and a prototype system is developed to

utilise data generated by honeypots on an exploitable server, in order to be able to create a

training file that will be used for machine learning. The proposed system makes use of both

new and modified code. Finally the prototype is tested on a home network to ensure it is

functional and that all objectives have been met.

To summarise, the objectives of this dissertation are listed below:

5

1. Research existing intrusion detection systems to understand how they function

2. Identify the tools needed to carry out data collection and extraction on the

proposed system

3. Use of the ideal honeypot components in the proposed system

4. Designing proper prototype illustrations using standardised modelling languages

such as UML (Unified Modelling Language) diagrams

5. An implementation of the prototype on a home network which can then be

extended to an organisation’s network.

6. Proper testing of developed prototype followed by a discussion on achieved results

6

Chapter 2. Literature Review

Intrusion detection systems are designed to detect malicious data sent to a network with the

aim of alarming network administrators of suspicious activity. The ARPANet project, founded

by the Department of Defence was the first network to be known for the interchange of data

between military personnel, governments and other researchers (Denning, 1989). A few

years later, researchers adopted the popular TCP/IP protocol and started to form the

“network of networks” as termed by many scientific articles. The Internet came to life in the

early 1990s when Tim Berners-Lee created the World Wide Web and the network was

becoming more available to the general public. As a result, the Internet started to see all

forms of activities and network traffic generated by common users, businesses, researchers,

scientists and several other entities. Scientists responsible for the upkeep of the network

started to worry about the level of protection the Internet had. This is because of the

humongous network size of the Internet where volumes of data were being shifted from one

corner of the world to the other. There had already been reports of stolen data and attacks

on organisation networks which resulted in the loss of huge sums of money (Elmer-DeWitt et

al., 1983). One of the most well-known attacks on the global network originated from a

computer program designed to infect a system and replicate itself on other systems

connected to a network, also known as a worm. There was a significant push in the last ten

years for researching better ways to prevent network breaches, especially due to the

increasing number of data being generated each year (Walker, 2015). This led to the need

to develop more sophisticated and evolved security network measures which make use of

statistics, machine learning and pattern signatures. Systems that make use of these

properties are known as intrusion detection systems, a passive solution deployed on network

infrastructure with the objective of catching malicious behaviour and alerting management

about possible threats. The most common types of IDS are anomaly based or signature

based. The former solution recognises malicious behaviours as outliers from the norm by

using statistical analysis. On the other hand, signature based IDS cross-references attacks

on a pre-set definition of an attack type, following a certain pattern of events related to it.

7

In this paper, the primary focus of the literature is to compare signature based IDS solutions

against proposed machine learning aided intrusion detection systems. To begin with, the first

section gives an overview of the two types of intrusion systems, host and network based,

outlining their advantages and disadvantages as well as recent advancements identified in

the literature. The succeeding section follows with the applications and limitations of different

honeypot solutions based on their level of interaction. The last section will cover recent

literature on proposed machine learning and enhanced signature based IDS, highlighting the

advantages and challenges encountered by other researchers.

2.1 Host vs Network Intrusion Detection Systems

2.1.1 Host Intrusion Detection Systems

Host Intrusion Detection Systems (HIDS) represent a single system which observes external

or internal unauthorised access, by identifying and gathering session related data. System

analysis is accomplished by monitoring system files and registry state, outputting any

changes to log files. Moreover, statistical analysis can be conducted on a host IDS to identify

discrepancies between normal user behaviour and the unknown user, depending on the

behavioural patterns observed from the moment of obtaining authorisation. A warning signal

is sent to the administrator or supervisor to alert of a possible intrusion (Letou & Devi, 2013).

Most HIDS use a database to monitor alterations on certain file system objects or memory

addresses.

2.1.1.1 Types of HIDS

There are four classifications of host intrusion detection systems which are categorised

according to what is analysed for intrusion detection (Boer & Pels, 2005). These are file

system monitors, log file analysers, connection analysers and kernel based IDS. A file

system monitor checks the details of a file object, such as ownership, granted permissions

and size with previously gathered information on that object. Moreover, file integrity is

analysed using checksums such as MD5 that is used to match the computed data hash

value with a former hash of the same file. The drawback of using a file based IDS is that it

8

does not work in real-time, meaning that hackers can leave no trace, increasing the risk of

not being detected. However, Boer & Pels did propose a number of solutions to decrease

such risks. For instance, the monitor should be configured in a way that the location of highly

sensitive files are unreachable by an outsider. During this phase, the checks that are to be

conducted on the selected files and paths need to be finalised. In log file analysis, scripts are

run real-time on various dumped logs to look out for loglines matching certain keywords,

such as “error”. A connection analyser monitors incoming and outgoing traffic on TCP, UDP

and ICMP ports. It listens to these ports and is able to detect foreign malicious connections.

An open source, widely used connection analyser is Snort, which can be set up in three

different modes: sniffer, packet logger and network intrusion detection (Mary & Devi, 2013).

The limitations of early implementations of host intrusion systems include the detection of

individual attacks while they are happening or mostly after they have happened.

Furthermore, continuous updating of new found attacks by system administrators onto a

match or rule database was required. Also, there was no form of intrusion prediction.

Coincidently, these are also some of the disadvantages of a signature based IDS.

2.1.1.2 Modern solutions

The most recent host intrusion detection solutions detect intruders based on deviations from

a learned user or system profile, alerting a supervisor with a percentage certainty of an

attack. Profiles are generated by analysing behavioural attributes of users using the system

over a period of time, gathering a number of characteristics that differentiate from one profile

to another (Vokorokos & BaláŽ, 2010). The researchers highlight the possibility of attackers

to assimilate behaviour identical or similar to standard user behaviour profiles. It would be

really interesting to find a counter measure for this drawback. These solutions are known as

statistical anomaly based detection systems. Such systems use training and testing

techniques to be able to correctly classify an intrusion based on theorems or algorithms. The

intrusion detection solution proposed by Altwaijry illustrates the use of a naïve Bayesian

filter, comprised of a training and testing engine, to calculate the probability of attributes

occurring in normal and attack traffic. (Altwaijry, 2011) Other techniques include the use of

genetic algorithms to predict an attack or normal type of data. The process is split up into the

9

training phase, were chromosome groups are generated based on training data and the

detection phase, which generates testing chromosome groups. The training and testing

chromosome groups are compared after undergoing crossover and mutation processes. The

prediction is classified when the final chromosome of test data falls closely under one of the

chromosome groups, representing either a normal or attack type (Hoque et al., 2012).

2.1.2 Network Intrusion Detection Systems

On the other hand, Network Intrusion Detection Systems (NIDS) operate at the gateway

level, monitoring all incoming traffic both externally and internally on a network. The system

generally analyses packet headers against known signatures to either alert the network

administrator or suspend all network traffic, depending on the severity of the detected attack

(Yadav & Singh, 2013). An early concept of designing an intrusion detection system capable

of monitoring network traffic was conceived from applying some known principles of host-

based IDS onto a network. The research conducted by Heberlein resulted in a network

security monitor (NSM) capable of detecting most attacks targeted at a localised network

(Heberlein et al., 1990). NSM would detect an attack based on previously recorded resource

usage under normal user behaviour against current, real time resource usage. If usage didn’t

match with normal user behaviour, it would alert the researcher through the monitor. Six

years later, a company called Internet Security System Inc. released a commercialised

network intrusion detector named RealSecure, on the Windows NT 4.0 platform (Khandagale

& Kalshetty, 2013). Modern NIDS have a packet sniffing module to constantly monitor all

packets, focusing more on those that can lead to malicious events. Furthermore, a server is

responsible of managing and analysing gathered traffic data while an administrator oversees

the whole system (Stallings et al., 2014).

2.1.2.1 Sensor Placement

In a NIDS, it all comes down to the placement of sensors that will be responsible for

detecting any malicious patterns in the data being transmitted on the network. The challenge

is to lower processing overheads, costs and memory usage. In order to do so, sensors need

10

to be placed in key positions in the network for the most effect and possibly with the least

impact on the network as well as the users. An attack graph technique has the ability to

identify paths and locations that attackers are more likely to pass through than others. The

graph is produced by taking into consideration the network configuration and placements of

critical files. Placing sensors on paths which lead to critical files and therefore more likely to

be chosen by attackers, results in a lower cost of sensor deployment as they are only

installed were needed, and not throughout the whole network (Noel & Jajodia, 2007). There

are two types of sensors which can be deployed: inline and passive sensors.

Inline Sensors

Inline sensors are usually installed with other network devices such as a gateway or at a

firewall. The advantage for choosing this alternative is the sensor’s ability to stop network

traffic the moment it detects an attack (Zou & Chakrabarty, 2003). The disadvantage to this

approach is the delay which results from traffic that needs to pass first through the gateway

or switch and then through the sensor. Another drawback is the termination of connectivity if

an attack is detected. Operations are halted which ultimately lead to downtime costs. The

worst case scenario would be when the detector stops all communication because of a false

positive. Therefore, most companies use what is known as the passive sensor.

Passive Sensors

The role of a passive sensor is to monitor a copy of the traffic data, so the real traffic never

passes through it. These sensors are usually deployed in key network sections, for instance

services exposed to the Internet inside a subnet, known as the demilitarised zone. A

spanning port which can be found on a switch can be used to analysis traffic circling the

network. It is rather cost effective and simple to set up. Problems can occur if during the

process the switch is set up incorrectly, which can stop some traffic from entering the sensor.

Network tapping and IDS load balancing are some of the other methods to establish a

passive sensor. The former utilises the main physical device such as a fibre optic cable to

get a copy of network traffic. The downside to this solution is the additional costs needed to

buy these attachments and the network downtime. Load balancing also utilises a copy of

11

network traffic data but in a collected format. It has the ability to redistribute the traffic to

multiple sensors across the network based on predefined rules set by an administrator

(Kabila, 2008).

2.1.2.2 Enhanced NIDS

Until recently, the literature shows that most of the proposed work on these systems are

passive implementations, meaning that no action is taken by the system itself other than to

alert the system administrator. Network intrusion detection and prevention systems (NIDPS),

an improved system with active defensive capabilities, can be set up to take immediate

action, specified by a network administrator at the implementation stage, when the attack is

launched rapidly. (Korčák et al., 2014). The decision taken by the NIDPS is not only limited

to IP address matching and traffic anomaly detection but also based on port matching via

TCP and UDP channels. Normally, this results in the blacklisting of an IP or closing a port

(Scarfone & Mell, 2007). The main difference between host and network based IDS is that

the latter checks packets targeted at vulnerable systems in real time against a set of header

attack data while a host monitors user activity on a system for any anomalies (Stallings et al.,

2014).

2.1.3 Industrial Deployment

As expressed by various experts in the literature, in a real world scenario, the optimal

solution for defending an organisation from digital attacks from the inside as well as the

outside is to implement a network-based IDS together with a host-based IDS as both

systems complement each other. Marinova-Boncheva suggests the use of the two types of

intrusion detection systems in a proper business setup (Marinova-Boncheva, 2007). She

states that intrusion systems should largely focus on host-based modules, later

implementing a network IDS solution on top to strengthen the security against attacks.

However, Parande argues that HIDS is restrained by the inability of not detecting an attack in

real time, unlike a network based IDS (Parande & Kori, 2015). An approach to enhance

HIDS is by utilising machine learning techniques in order to not only decrease the delay of

attack identification but also increase the accuracy as well as efficiency by lowering the rate

12

of false positives and IDS evasion. This can be achieved by collecting attack patterns directly

from the source with the use of honeypots.

2.2 Honeypot Implementations

A honeypot, in computer security, can be defined as a device containing a number of

exploits, which are attractive to attackers who want to infiltrate an organisation’s network for

malicious intentions. The first honeypot was known as The Deception Toolkit, developed by

Frank Cohen in the late 1990s (Cohen, 1998). In his research, Cohen discusses the use of

the software he developed and its effectiveness against automated attacks on a system

employing the toolkit. Attackers probing such a system will be presented with multiple

vulnerabilities consisting of a high number of deceptions. An important feature of the

Deception Toolkit was the ability to alert an administrator of all the attacks against

deceptions, providing all the information of the techniques used to attempt to break into the

system using a particular service, such as “sendmail”. This was a game changing

breakthrough for computer and network security. Honeypots gained popularity between 2000

and 2001 when there was a sudden outbreak of worms, which are defined as computer

programs that are able to replicate and spread rapidly over a network such as the Internet

(Fosnock, 2005). These programs posed a threat to networks all over the world as their main

purpose was to increase network traffic and therefore increase latency over the whole

network. At the time, there was no means to capture the worm for analysis and therefore

honeypots were considered the optimal solution for trapping these dangerous programs

(Spitzner, 2002).

2.2.1 Honeypot Classification

There are many different honeypots available nowadays, which can be used for various

applications. For this research, honeypots are categorised according to their level of

interaction with the attacker. The more data that is needed to be collected for analysis, a

higher level of interaction will be required. Table 1 illustrates the benefits and drawbacks that

13

come with each category, according to the research conducted by Mokube and Adams

(Mokube & Adams, 2007).

Level of
Interaction

Advantages

Disadvantages

Example

Low

 easy to set up and
 cost effective

 require little to
 no expertise

 low risk

 provides limited
information on
specific attacks

 lack a complete
feature set

Honeyd

Medium

 offer better
simulated services

 more difficult for
attackers to
identify

 enables logging of
more advanced
attacks

 increase in security
vulnerability

 requires more time
to implement and a
certain level of
expertise

Kippo

High

 no simulation,
actual OS used for
interaction

 ability to log huge
amounts of attack
data

 complex

 time consuming

 highest probability
of risk

Honeynet

Table 1 - Honeypot levels of interaction

In the literature, honeypots have been used for quite a number of applications in distinct

fields of research. For instance, Portokalidis and Bos designed a system known as

Sweetbait that utilises honeypots to capture fast worms for automated analysis and signature

generation (Portokalidis & Bos, 2007). Sweetbait then sends out continuously updated

signatures to both network and host based IDS/IPS in order to neutralise worms in parts of

the Internet.

14

2.2.2 Applications

Dr.Annamma Abraham and her colleagues proposed a real time intrusion network intrusion

system that makes use of honeypots together with both NIDS, NIPS and software tools such

as Snort as well as firewalls (Prasad.B et al., 2011). In their system, they show how all these

tools can work together to create a system of systems that will overcome the drawbacks

present when one of them acts on its own. Honeypots were used to continuously extract log

data to detect any irregular behaviour.

Honeypot deception was a technique implemented by Kulhalli and Khot to study the attack

patterns of trapped intruders (Kulhalli & Khot, 2014). It is used in such a way that the

attacker does not become aware that an attack attempt failed, terminates connections to the

network and shifts the session onto the honeypot. All interactions with the honeypot are

recorded. IP addresses, attack type and other variables can be observed from the graphical

user interface of the proposed system.

In Network Security Using IDS, IPS & Honeypot, the researchers transformed the honeypot

into a dummy server containing a database full of false information and another database

containing logs describing packets sent throughout the network (Malav et al., 2016).

The dummy server will be activated when a user without the necessary permission or an

intruder trying to deny services to server clients, classified as a denial-of-service (DoS)

attack, tries to infiltrate the main server. The IPS being utilised in this system also checks

internal transmissions between clients for malicious packets.

To extend the life of a honeypot, Taylor and Hayatle test a model, using Markov Decision

Process, that allows honeypots to decide whether to allow certain illicit instructions to

operate on the environment (Taylor & Hayatle, 2013). The authors conducted this research

in light of anti-honeypot technologies which were rendering intruder traps ineffective.

Botmasters can instruct an exploited system to attack certain components which monitor the

execution of commands. If these components fail to execute, then most likely the system is a

honeypot. By using this model, the results show that botmasters will have the advantage

15

over honeypot techniques. The authors argue that the scope of their model is to help the

honeypot supervisor configure the system to respond to botmasters’ requests in an optimal

strategy.

2.3 Augmented Signature Based IDS

Signature based IDS is an approach for detecting intrusions by matching all incoming data

on a host or network to a database containing known signature attacks. The main advantage

of such a system is the accuracy of identification when detecting known attacks (García-

Teodoro et al., 2009). This results in a low false positive percentage. On the other hand, they

are not able to detect attacks that have not been inserted into the database before.

Therefore, signature based detection systems, on their own, require continuous updates to

keep effective against novel attacks, very similar to how an anti-virus software works.

Advances have been made to improve the reliability and accuracy of these systems. Gupta

et al. dedicated their research to discuss the various pattern matching algorithms available in

order to give an idea on the efficient algorithms (Gupta et al., 2014). The main focus, for the

purpose of this research, is on machine learning techniques applied to signature based

intrusion detection systems. Other methods that improve on the concept of these systems

are discussed.

2.3.1 Machine Learning

Machine learning (ML) is the procedure of teaching a computer or device to automate a

process by using various algorithms and techniques. Arthur Samuel, an American pioneer in

the area of artificial intelligence, defines machine learning as a “Field of study that gives

computers the ability to learn without being explicitly programmed” (Simon, 2013). There are

two types of machine learning: supervised and unsupervised. In supervised learning, the

necessary information that will help a machine work with unseen data has already been

processed. This is labelled as training data. Unforeseen input is labelled as testing data.

Supervised learning can be divided into two categories. Classification uses supervised

16

learning to test if a data entry falls under the first set or the second set of classified data.

Support vector machines (SVM) is an example of a classification technique used for

supervised learning (Kotsiantis, 2007). On the other hand, regression is used for continuous

data.

2.3.2 Transition from datasets to honeypots

The literature shows that there is an opportunity for more research to be conducted in this

area. Most of the early submissions for machine learning implementations utilise datasets

containing a set of data to be audited, having both normal and attack data. The KDD99

dataset is a widely used test bed by many researchers to evaluate the performance of their

respective proposed intrusion detection systems (Lippmann et al., 2000). Gangwar et al.

utilise this dataset in order to compare their self-learning hybrid intrusion detection model

that is comprised of base feature selecting classifiers and a data mining classifier, with other

proposed intrusion detection methods (Gangwar & Sahu, 2014). In 2009, a review of

intrusion detection using machine learning was undertaken and other popular datasets for

intrusion detection were shown to be DARPA1998 and DARPA1999 (Tsai et al., 2009). The

review also shows that SVM was gaining popularity as it was the most used in this research

area. As discussed before, honeypots were used for other applications such as the attempt

to capture worms for analysis to help immunise parts of the Internet by distributing

signatures to intrusion detection systems (Portokalidis & Bos, 2007). Honeypots were

deployed on a large scale inside an enterprise network in order to identify infected hosts

(Uzun, 2014). The machine learning system is trained on models that are formalised by

using malware samples collected from the honeypots. In using this approach for detecting

infected hosts, the results show a significant decrease in false positives, which is expected

since 97 honeypots were used.

Jain et al. show how these technologies can all work in unison to create a system such as

the proposed hybrid intrusion detection system proposed in their research (Jain et al., 2011).

The implementation uses honeypots to gather log data stored in a database to be used as

an input for WEKA, a machine learning tool, to generate a real time rule set for Snort, based

17

on signatures and anomaly techniques, which is capable of classifying normal and malicious

traffic.

2.4 Summary

With the increase in traffic that is being generated daily, gigabytes or even terabytes of data

are flowing through organisation’s networks. Volumes of data located in data repositories are

being targeted by assailants to be used for malicious purposes. There is a need for

increased security on these networks since in the last few years, multiple cyber-attacks

against companies have been reported (Koch et al., 2012). Although there are solutions

which do implement either one of the mentioned technologies in the literature, it is either

used for other applications or utilised in a different approach. By combining honeypots to

gather attack information from an intruder and supervised machine learning techniques it

would be possible to create a dynamic training file for an IDS which updates regularly when

unclassified data containing new attack features is not registered. The defensive system is

therefore able to learn about new threats, allow a supervisor to suggest the action that

should be taken and detect existing ones. Furthermore, such a system helps to mitigate the

possibility of an intruder teaching the system to consider their attacks as normal data.

The purpose of this work is to research these technologies to contribute academically by

developing a prototype that is capable of capturing, monitoring and analysing attacker

behaviour in order to extract features from the attacks that can help an intrusion detection

system classify them with the help of supervised machine learning. The literature shows that

there is room for more research in this particular field. By using machine learning, the

signature file that is normally used by some kinds of traditional IDS is replaced by a training

file that will be constantly updated when novel attacks are detected or alterations of existing

attacks are discovered.

18

Chapter 3. Methodology

In this section, the approach taken for designing and developing a prototype system that is

able to extract data from honeypot logs is discussed. The selection process for honeypots is

described and reasons as to why the chosen honeypot was selected are given. The picked

honeypot is then used as a stepping stone for the development of the prototype. The

implementation of machine learning techniques, using the extracted data, will be

subsequently explained.

3.1 Design and Prototype Development

The initial step for developing a prototype is to illustrate how it works on paper, by using

diagrams and technical graphical representations. A well-known and accepted standard that

is used to design the architecture is explained below. The prototype developed was based

on Ubuntu server, running inside a virtualised environment on a host machine, with the

honeypots running on this server.

3.1.1 UML Diagrams

The use of Unified Modelling Language (UML) allows for a standardised way of

communicating early and finalised concepts of software projects. It is widely used in the field

of software engineering and computer science, to show the different classes as well as

components. Variables, functions and relationships are depicted in these illustrations in such

a way that they are understood by peers and other interested readers. The diagrams were

created using Microsoft Visio 2016 on Windows 10 Home Edition (64-bit version). Two types

of UML diagrams are used which are:

19

i) Class (Descriptive)

ii) State (Behavioural)

In addition, a general system diagram was drawn to illustrate the setup of the prototype,

other entities and boundaries.

3.1.2 Environment Setup

3.1.2.1 Host Configuration

The prototype built was software based. Software is the intangible part of a computer

system. It can be categorised into application software and system software. The latter can

be either operating systems or other programs capable of running application software.

Meanwhile, application software can be any program that provides functionality to the user.

Given the nature of the proposed system, the prototype was built and run in a virtualised

environment on a host machine to avoid any security risks.

To set up a virtual environment inside the host, a virtual machine (VM) needs to be created.

A virtual machine is a software which runs applications inside a chosen operating system

(VMWARE, 2014). It utilises the host physical hardware and resources to be able to operate

as well as interact with the user. In order to do this, specialised software was required to be

installed. The idea is to run an operating system on top of the host OS. In this case, a Linux

operating system will be running on top of Windows 10, inside the virtual environment.

3.1.2.2 Test Environment

The software selected to create this environment was VirtualBox, a virtualisation program

developed by Oracle. VirtualBox was chosen mainly for its simplicity, compatibility and active

community development. In order to properly utilise this software, these features have to be

20

enabled on the host: hyper threading and hardware virtualisation. Hyper threading is the

process of tricking an operating system into thinking it has more cores than it actually has

(Intel, 2002). So for instance, the Intel processor on the host machine, has four cores in total,

but to the operating system they are seen as eight threads. So each core is doubled,

creating advantages such as efficient resource utilisation, increased processor throughput

and enhanced performance, for software that makes use of this technology. Hardware

virtualisation is the capability of using system components, for instance a hard disk, as a

shared storage space between host and any virtual machines residing on the host. (Turban

et al., 2007). The machines operate in isolation and a host can have multiple virtual

machines utilising the same system resources. For instance, a large server containing many

smaller virtual servers that can each operate using their unique operating system. This

tremendously increases efficiency and saves cost as the same hardware is being used by

more than one system. In a modern computer system, these settings are probably already

set by default and no extra work is required. Nonetheless, steps and illustrations are found in

the prototype architecture, showing where these features are found and how to enable them.

3.1.2.3 T-Pot Honeypot Platform

The honeypot package chosen is called T-POT, a multi-honeypot platform that started as a

project at Deutsche Telekom AG, a German based telecommunications company located in

Bonn (Deutsche Telekom AG, 2016). The platform was deployed on the virtual machine that

met the requirements shown above. The development of the proposed prototype was

conducted on the platform itself, to keep everything in the same place.

3.1.3 Software Development

The development of the prototype was carried out by getting logs from the honeypots and

identifying important information from them. The process is known as feature selection. To

do this, scripts were written on the platform. There was quite a selection of scripting

languages given that the primary function was to get a file and read from it. To keep the

system as simple as possible and with minor modifications, two basic scripting languages

21

were chosen in total. These are bash and Perl, with the former being a command language.

On the other hand, Perl is a script programming language used for text processing and other

tasks. Perl5 was used in order to prepare the data for training and testing in the machine

learning process.

WEKA was chosen for applying machine learning techniques to the extracted data. It is a

data mining tool with open source machine learning software developed by the University of

Waikato. WEKA was also the simplest to deploy on the Ubuntu server given that it is built

using Java.

A front-end web interface was also developed to show results generated from the system,

outside the virtual machine. This was done using hypertext mark-up language (HTML) for

creating a basic web page, cascade style sheets (CSS) for styling the interface and finally

PHP for server side processing. A free web-hosting account was created for this sole

purpose.

The primary objective of this prototype was to gather attacker data from honeypot logs and

extract the most relevant information. This information can then be used for classification of

data using machine learning to alert network administrators in an enterprise about incoming

attacks. Thus the system can be seen as an early detection intrusion system that can flag in

almost real-time. This limitation is discussed later on.

3.2 Testing

Prototype testing consisted of seeing that the platform was properly configured such that all

the data gathering functionality worked, and the web interface represented the right

information to the user. The first step was making sure that the honeypots were accessible to

the outside world, thus prone to be targeted by attackers. Before starting the tests, it was

22

made sure that the platform was accessible from the internal home network. Subsequently,

ports were opened according to the documentation of T-Pot platform and the system was left

for two hours running in the background to see if any activity is recorded. Putty was installed

during testing to redirect the virtual machine’s local address to the host machine to visually

see what is happening on the Ubuntu server. Furthermore, it was used to generate good

traffic on the network during the testing phase. mintty, an open-source terminal emulator for

Cygwin, is another software installed to transfer files between Windows and Linux for testing

and backup purposes.

At a later stage, a script was written to grab logs generated by honeypots from their

directory, and copy them to the operating directory of the user. A second script was written to

read from a log file and extract certain lines which were used in the following script. Once the

relevant lines are filtered, another script tested was used against the extraction and

manipulation of pieces of data from the extracted information to output a result in the format

required by the machine learning software WEKA. This script was then enhanced for the

final version of the prototype.

Testing was carried out throughout the development of the prototype to find what exactly

works best to get the desired result, both in terms of the system itself and the web interface.

The testing process is centred on the following components of the architecture:

i) T-Pot Honeypot Platform

ii) Script data processing

iii) Machine Learning

iv) Web Interface

23

Screenshots were taken during and after testing the finalised version of the prototype. The

web interface is also shown in some screenshots. The following table lists all the software

that was used throughout the prototype development:

Name Publisher Version No. Use

Microsoft Visio
Professional 2016

Microsoft Corporation 16.0.6868.2060
Design of UML

Diagrams

T-Pot Honeypot
Platform

Deutsche Telekom AG 16.03

Honeypot
Implementation

and
Deployment

Putty Simon Tatham 0.67.1010.0
Generation of
good traffic

during testing

mintty Andy Koppe 2.3.5

Transfer of
files required
during testing
and backup

time intervals

Oracle VM VirtualBox Oracle Corporation 5.0.16

Creating a
virtual machine
for T-Pot and

isolate the host
for security

reasons

OpenSSH for
Windows

Michael Johnson 7.2p1-1

Requirement
for creating a
link between

host and virtual
machine

WEKA University of Waikato 3.6.13

Preparing data
to be trained

using a
classifier and
test data to be

classified
visually

Notepad ++
Don Ho

(Senior Software
Engineer)

6.9.1

Development
of the simple
web interface

to display
results

Table 2 - Software used during development

24

Chapter 4. Prototype Architecture

The prototype built consisted of two components: T-Pot multi-honeypot platform and a web

interface. T-Pot was used to deploy several honeypots on a home network, running on an

Ubuntu server inside a virtual machine. This was done to isolate the host from the platform.

In addition, scripts were written and executed on the platform. Their purpose was to collect,

analyse and filter important information from logs generated by honeypots. This was done by

implementing pattern matching algorithms, a process known as feature selection. The

information selected was then used to build a predictive model using WEKA, an open source

collection of data mining tools and machine learning techniques. The last entry in the chosen

honeypot log was put against the model to obtain a result. The result was uploaded on a web

hosting server for viewing from a network supervisor or any external source. The web

interface displayed the result together with the state of the Ubuntu server.

The diagram in the next two pages provides an overview of the system environment and

components.

25

Router

Firewall Host

Domain Host

Websiteindex.php cowrie.txt

Internet

26

Ubuntu Server

Cowrie ELK Stack Honeytrap Glastopf Elasticpot

Bridged Adapter

LogsPrototype

Figure 1 - General System Diagram

The T-Pot honeypot platform operates inside a virtual machine environment on a Windows

host machine. The virtual machine’s operating system is Ubuntu Server 14.04. The platform

contains several honeypots. Cowrie is the honeypot of choice for this work and ELK Stack is

used to represent visualisations on the Kibana dashboard. Honeytrap, glastopf and

elasticpot are other honeypots that were chosen for future development. Logs of each

honeypot are copied to the Logs folder, which is then used by the prototype, a combination

of scripts that work on these logs and classify traffic accordingly. The virtual machine is

connected to the home network via the bridged adapter. Subsequently, this allows the virtual

machine to be externally accessed from the Internet and therefore exploitable. Finally, the

classification results are transmitted to a web server and can be viewed online.

27

4.1 Prototype Design

The design phase is an important stage in the prototype development process. It illustrates

the main components of the prototype and the relationship between them. As such, UML

diagrams have been drawn for the following components:

i) Ubuntu Server

ii) Web Host Server

For each component, a class and state machine diagram was drawn. Furthermore, a general

system diagram, showing an overview of the whole prototype setup, was also designed.

4.1.1 Ubuntu Server UML Diagrams

The T-Pot platform was deployed inside a virtual machine, with Ubuntu Server as the

operating system. The primary goal of the platform is to capture traffic related data that is

flagged by the various honeypots available. Scripts that are used to develop the prototype

are located on the platform. Also, the classification result of test data is temporarily stored in

a file. The platform sends the file to an online web hosting server to display the result on an

interface.

4.1.1.1 Class

A UML class diagram is split into two components: class members (attributes or methods)

and description section. Class members can have either a “+” notation, signifying a public

method or a “-” notation that represents a private method, belonging to that class. The

following diagram shows the Ubuntu server in UML class representation:

28

Figure 2 - Ubuntu Server Class Diagram

The diagram represents a grouping of members into four main classes, which are

Honeypots, WEKA, Scripts, and Cronjob. The latter is the method for automating the

prototype process calls every minute. The Honeypots class represents an abstract view of

honeypots that are found on the T-Pot platform. Each honeypot has its own methods and

forwarded port, operating in isolation from other honeypots to avoid conflicts. WEKA class

contains all the methods for operating WEKA inside the Ubuntu server. The second half of

this class shows public methods that can be called externally by scripts and other programs.

The Scripts class contains all the scripts that are used in the prototype, from the collection,

filtering, selection, testing and training of data. Some of these scripts contain private

methods and function calls.

29

4.1.1.2 State Machine

The state diagram at the end of this section illustrates the various states a system can be in

at any point in time. The initial state is denoted by a blue circle and the final state by a blue

circle with a white outer rim. A state is represented by an edged rectangle. An arrow is used

to show a transition from one state to another. This notation can have a trigger, guard or an

effect. The trigger symbolises the cause that leads to the transition. A condition must be met

in order for the transition to take place. Finally, the effect represents that action taken on the

object in control of state machine. This is denoted in the following way: “Trigger [Guard]

/Effect”; drawn near the arrow indicating the transition. A state can have multiple states

inside of it. These are known as sub-states. On the other hand, the state containing sub-

states in known as a composite state. A submachine state denotes complex composite

states that need to be separately drawn. The submachine state is illustrated by drawing two

smaller states in the bottom right corner. The diagram in the next page shows the states of

the prototype.

The initial state of the prototype is the blue circle at the top of the diagram. As soon as the

virtual machine running the Ubuntu server has finished loading, the system enters in the

Check Credentials composite state. The user is shown a details prompt screen asking for

username and password. If the details are incorrect, the user is asked to re-enter the details.

This process continues until the user is authorised by entering the correct combination of

both username and password. As soon as the user logs in, the honeypot services are

started. Subsequently, the automated process starts, leading to the crontab. A crontab is a

text file containing commands to be executed in a given time, down to minutes, given cron’s

granularity limitation which is discussed later on (Sharma, 2013). The cronjob, a command

that is written to this file, is responsible for executing scripts that put the prototype system in

states inside the Crontab composite state.

The automated process starts off by retrieving the corresponding logs of each honeypot. The

most recent records are then extracted and entries are then filtered. The filtered entries go

30

through the feature selection process that is used later for machine learning. At this stage,

the features that are used for machine learning are selected by text processing methods that

make use of pattern matching algorithms written in Perl. The selected features are then

converted into a format that is recognised by the machine learning software, WEKA.

Classification (Higher) is a submachine state that represents the machine learning states.

Within this state, the submachine state Classifying (Higher) represent the actual training and

testing states that are used during the machine learning stage. Training occurs only if no

training file is found. For the purposes of this prototype, training was done only once. If the

training file already exists, training is skipped and the processed data is tested against the

model generated during the training phase. Finally, the result is uploaded onto the web host

server and viewed online. This whole process is repeated every minute to continuously

check for possible attacks.

If the process is concluded, it waits for the next minute to start. The extra time is spent idling,

waiting for the next cycle to start. The Idle state can be reached after completing the

automated process, starting the honeypot services or logging into the system. The Off state

can be reached from any state when the user wishes to terminate the Ubuntu server.

31

Classifying

skip training

Testing

Training

Classification

Not Already TrainedAlready Trained

/check training file
file not found

[file exists]

/save result

Classifying (Higher)

skip training

Check Credentials

Crontab

Start Automated Process

Off

End Automated Process

Idle

Turn on/
Enter user credentials

/check details

[login accepted]

[login invalid]

After 60 seconds/restart process

Retreive Logs Extract Recordslogs retrieved

Filter
extraction

Text Processing
selection

conversion

Upload
output result file

send ftp request

Start Honeypot Services

Classification (Higher)

 Figure 3 - Ubuntu Server State Machine Diagram

32

4.1.2 Web Host Server UML Diagrams

The web server receives a request from the Ubuntu server to download the classification

result file, at the end of the automated process cycle. This server is used to read from this

file, which is used to show the results on a web page together with a status representing

whether the Ubuntu server can be reached. The landing page is written in HTML and PHP

for file processing and presentation.

4.1.2.1 Class

Figure 4 - Web Server Class Diagram

The web server hosts a website titled dzprototype.byethost31.com, a free domain provided

by ByetHost. The site has two important files that contribute to the functionality of the

prototype: index.php, which is the main page where the result is displayed and the result file.

The Web Host Server class represents the domain and the main functionality of the server.

The main page is loaded every thirty seconds to get the latest result from the Ubuntu server

to transfer the most recent classification. The server stores this file for reading from the Web

33

Interface. The interface is basically the main page where the result is shown and the Ubuntu

server is sent packets to check whether it is online or offline.

4.1.2.2 State machine

Figure 5 - Web Server State Machine Diagram

The first state of the web server is initialising the main webpage, index.php. Subsequently,

the webpage reads from the sent result file located on this server. Then, the text in the result

file is filtered and the classification result is presented on the interface. Every thirty seconds,

the process is repeated.

34

4.2 Prototype Development

Following the design of UML diagrams above, a prototype was developed to illustrate how all

the classes as well as state transitions of both the platform and web host server can work in

practise. The scripts that were used for the prototype development can be found in the

appendices.

4.2.1 Hardware Implementation

The prototype makes use of two main physical systems, the host and the web server. The

free web server contains all the files for the web interface. On the other hand, the host

machine is the system running the virtual machine. The host machine has the following

specifications:

Host Machine

Operating System

Windows 10 (64-bit)

Memory

16GB

Central Processing Unit

Intel Core i7-4790K

Primary Storage Device

Solid State Drive (Capacity 256GB)

Secondary Storage Device

Hard Disk Drive (Capacity 500GB)

Graphics Processing Unit

NVIDIA GTX 970 (Memory 4GB)

Table 3 - Host Machine Specifications

35

4.2.2 Software Implementation

As previously established, the prototype produced in this work is software. The prototype

was developed on a platform that was chosen for its multiple honeypot implementation inside

a server. The platform is called T-Pot, and as mentioned earlier it is developed by Deutsche

Telekom AG. To deploy the platform, a virtual machine with the following specifications was

created, to meet the requirements that are mentioned in the documentation (Deutsche

Telekom AG, 2016).

Virtual Machine

Operating System Ubuntu Server 14.04.4 LTS (64-bit)

Allocated Memory 6GB

Virtual Central Processing Unit(s) (CPU) 2

Virtual Machine Disk 64GB

Display Settings Default

Network

Name

Adapter Type

Promiscuous Mode

Bridged Adapter

Host Ethernet / Wireless Connection Adapter

Intel Pro/1000 MT Desktop (82540EM)

Allow VMs

USB USB 2.0 (EHCI) Controller

Table 4 - Virtual Machine Specifications

The virtual machine was created using VirtualBox. The memory allocated for the machine

was increased to 6 gigabytes to ensure stable operation for long periods of time. This was

needed as the virtual machine had to be left on for hours in order to collect sufficient attack

data for analysis.

36

4.2.2.1 Virtual and Host Machine Setup

The first step for installing the platform on the virtual machine was to download an image file

containing all the files required for installation. The image file, tpot.iso, is mounted onto the

virtual machine’s optical disk drive. Two CPUs were allocated to the virtual machine for

greater performance. In addition, network adapter was enabled and set to bridged adapter

so that the virtual machine is given Internet access. Also, some ports had to be opened for

attackers to target the honeypots. Most importantly, port 64295 was opened to enable

remote access through a secure shell protocol, known as SSH. Also, port 22 was opened

and port forwarded to allow cowrie honeypot to receive traffic.

Furthermore, OpenSSH for Windows was installed, enabling PuTTY to connect with the

Ubuntu server inside the virtual machine. PuTTY was used to transfer the platform’s local IP

address (127.0.0.1) onto the host machine IP address, on port 8080. This was done using

the following command: ssh -l tsec -p 64295 -L8080:127.0.0.1:64296 192.168.0.17; where –l

represents the login name, -p represents the port, -L is the bind address, followed by the

port, host and host port. The address at the end is the address of the virtual machine given

by the network. To verify that this command works successfully, the following dashboard

should come up when entering the local IP address, in a browser, on the host machine:

Figure 6 - Kibana Dashboard

37

In order to get the above result when looking up the local address from the browser, it is best

to open port 9200 TCP. Kibana is a visualisation tool for representing historical and real time

data that was gathered on the honeypots. It has many dashboards to choose from, from

minimalistic and specific to industrial dashboards. In addition, Cygwin, also known as minty

was installed to establish a link between the Ubuntu server and Windows to backup files on

request, using the following command line:

rsync -avzu --exclude='/*/.local' -e 'ssh -p 64295' --progress tsec@192.168.0.17:/home/tsec/*

/cygdrive/c/Users/Daniel/Desktop/Logfiles/ALLTSEC

A file copying tool, called rsync, is used to keep files updated on two different computers.

This is done by uploading only the changes in the files. –avzu denotes compression

techniques while the rest of the command line establishes a secure tunnel using ssh to copy

files from Ubuntu to Windows.

4.2.2.2 T-Pot Configuration

The T-Pot platform requires less effort to configure. The most important configuration was

done on the root user were the honeypot logs were being stored. A file called persistence.off

was renamed to persistence.on. This was done to keep all the entries of the honeypots after

shutting down the machine. New directories were created on the server as seemed fit during

development of the prototype. Also, WEKA was installed as it was not pre-installed on the

platform.

38

Figure 7 - Enabling log persistence

4.2.3 Prototype Functionality

The scripts for the prototype were written in bash and perl scripting languages. A total of

eight scripts were written, some for log extraction and others for preparing the data for the

machine learning phase. All the code can be found in the appendices.

4.2.3.1 General Scripts

The first script that was written, logretreiver.sh, is responsible for copying all the logs

generated by the honeypots from their respective directory and putting them all in one

directory under the tsec user. The following figure shows the script in operation:

39

Figure 8 - Retrieving Logs

4.2.3.2 Preparing data for machine learning

There are some similar scripts that are used in this work. Due to the nature of the prototype,

two scripts were required for each functionality implemented. Similar scripts were created,

which were modified for preparing the test data that is used in the machine learning stage.

Training

After retrieving all the logs, the next step is to extract the last entries recorded in each log. In

the script extractor.sh, this is done by using a command line tool called grep. The tool is

used to read a file and return matching expressions identical to what is specified in its

argument. The tail command is used to start reading from the end of file. The results are

sorted and unique entries are outputted into a new log file.

Figure 9 - Extracting last entries

The next step is to identify attributes that will be useful for classifying good or malicious

traffic, known as feature selection. For this prototype, traffic classification was done on

cowrie honeypot logs. Cowrie is a medium interaction honeypot with the purpose of logging

brute force attacks and interactions performed by an attacker (Oosterhof, 2015). A script,

40

prototype.prg, was written to read through the entries extracted by the previous script and

format the data in such a way that it can be used in machine learning.

Figure 10 - Feature Selection

Finally, the converter.sh script takes the formatted attributes and converts them into a format

that is understood by WEKA. The result is cowrie.arff, a training file, which contains the

chosen attributes. At this point, the expert checks each entry in the training file and inputs a

1 for malicious and 0 for non-malicious. This is a very important stage for the machine

learning process.

41

Figure 11 - Training File

The training file is made up of four attributes in total, apart from the Malicious attribute. The

first attribute, Port, represents the source port of the attacker. Status shows if a particular

username/password combination was correctly entered. The attacker succeeds if the

combination entered is found in the user details text file. AttemptsOnPort represents the

number of times in succession, an attacker tried to enter on the same port. Most of the time

its only once since attackers are smart enough to always try different ports. That is why, on

the other hand, AttemptsOnIP is the number of times the specific IP of that attacker was

found in the 100 entries. If it lies between 3 and 6, then probably it is just a user who forgot

their password. Meanwhile, two digit numbers are big enough to indicate a brute force

attack. The expert looks at this data and decides whether an entry in the training file, is

42

malicious or not, by analysing all these properties. The training file is converted into a model

to be used at a later stage for testing data.

Testing

The process and functionality for acquiring the data to be tested against the model utilises

existing functionality that is already implemented in the training scripts, with some minor

tweaks. The logs are retrieved using the same script that was written for the training phase,

logretreiver.sh. In extractortest.sh, the grep command is used to get the last 60 entries that

match an expression instead of the last 100. The prototypetest.sh script works on these last

60 entries to generate the attributes mentioned in the training phase. The difference is that

the outputted file now contains only one data entry that is tested against the generated

model.

A script, convertertest.sh, then takes this file, containing one data entry and tests it against

the model, using the J48 classifier. This classifier is an open source implementation of the

C4.5 algorithm, using Java. The J48 class in WEKA generates a decision tree. The

pseudocode which can be seen in Table Y is adopted from a book called Top Ten

Algorithms in Data Mining (Wu et al., 2008).

J48 Algorithm J48(T)
Input: a feature-valued training dataset T

1. Tree = {}
2. if T is “pure” OR other stopping criteria met then
3. terminate
4. end if
5. for all attribute x contained in T do
6. compute information-theoretic criteria if split on x
7. end for
8. xsupreme - Best attribute according to computations above
9. Tree - creates decision node that tests xsupreme in root
10. Tw - derived sub-datasets from T based on xsupreme
11. for all Tw do
12. Treew = J48(Tw)
13. Attach Treew to the corresponding branch of Tree
14. end for
15. return Tree

Table 5 - J48 Pseudocode

43

The J48 algorithm relies on information gain. While traversing the tree, starting from the root

node, the paths that offer the most information gain are chosen. Therefore during

classification, the algorithm traverses each node to find the highest information gain that can

be achieved for the given test data and classifies it accordingly.

4.2.3.3 Process Automation

Figure 12 - Process Automation using crontab

The prototype’s purpose is to continuously collect traffic data for classification in real time.

With crontab, a tool designed to run commands or scripts at a specific time, a command

shown in Figure 11 was written to run the scripts in order every minute. This was done given

crontab’s one minute granularity limitation.

44

4.3 Conceptual Model

The following illustration is an adaptation of the open systems interconnection (OSI) model

for the developed prototype.

USER INTERFACE

Extraction Conversion Machine Learning

SSH FTP HTTP

TCP UDP ICMP

Cisco EPC3928S Gateway (IPV4 IPV6)

Network Interface Card

Ethernet Physical Layer

Figure 13 - Prototype OSI

The first layer of the model represents the physical structure that is in place to receive and

transmit raw communication data. The Network Interface Card sits on the second layer,

which is the data link. It provides transfer of data from one node to the other. In this case, the

data from the virtual machine to the host machine. The gateway lies on the network layer

and is responsible for selecting where packets need to go. The transport layer takes care of

traffic control using the three most popular protocols, which are also utilised in the prototype.

The session layer contains SSH, FTP and HTTP protocols which are used to manage

connections between the host machine, the virtual machine and the web hosting server. In

the presentation layer, data is formatted in a way that it can be interpreted and understood

by the application layer. The User Interface allows a user to view the results of classification.

45

4.4 Software Testing

Tests were carried out throughout the development stage to check that the platform is

working properly and that the scripts function as intended.

4.4.1 T-Pot Honeypot Platform

The platform was tested by checking that the resource load was balanced between the

honeypots and that all honeypots were operational during runtime. A script was executed

using the following command line to conduct these tests: sudo status.sh.

Figure 14 - Platform Test Script

The script showed the load, the status of each honeypot and their uptime, including that of

the platform. Furthermore, to confirm that the platform was connected to the Internet and

malicious users could attack it, the Kibana dashboard was used to represent visually the

data gathered by honeypots. This was done a week after the honeypot was deployed, to

gather a significant amount of data, as shown below:

46

Figure 15 - Cowrie Visualisation on Kibana

The Username and Password Tagcloud shown in Figure 15 represents the different

combinations used by attackers to try and infiltrate the Ubuntu server found inside the virtual

machine. All connection attempts redirect back to Cowrie for monitoring.

4.4.2 Script Data Processing

The scripts that were executed for processing honeypot data logs created result logs as

output, which were used by the next script in the crontab, in the order shown in Figure 12.

The images below show the input data used by prototypetest.sh and the outputted data

which is then used as an input for the test data classification.

47

Figure 16 - Cowrie log entries

Figure 17 - Cowrie Machine Learning test file

48

The above figures show that the scripts were functioning properly as they produced the

expected result.

4.4.3 Machine Learning

To show that the machine learning process was working, Figure 18 shows the file located on

the Ubuntu server which contains the last classification result.

Figure 18 - Classification Result file

4.4.4 Web Interface

The web hosting server contains two files that are fundamental for viewing the result from a

web page. These are cowrie.txt, shown in Figure 18, which is uploaded automatically every

minute and index.php which contains PHP code for interpreting the result from the

classification file. Figure 19 shows the interface when an attack is detected while Figure 20

shows the status for normal traffic. This was based on Cowrie honeypot traffic.

49

Figure 19 - Benevolent Traffic

Figure 20 - Malicious Traffic

50

Chapter 5. Conclusion and Future Work

5.1 Conclusion

The first objective of this dissertation was to research intrusion detection systems to identify

the different techniques that were proposed for classifying traffic on a host machine or

network infrastructure. The proposed work in the literature was critically analysed to highlight

the advantages and disadvantages of each technique. After analysing the literature, it was

identified that the next evolutionary step for intrusion detection systems rely on machine

learning techniques. The second objective was to find appropriate tools for implementing an

intrusion detection system that uses honeypots as data gathering mechanisms and machine

learning for classification.

Subsequently, a prototype was developed reflecting the designs drawn at an earlier stage to

meet the end objective of this work. A system diagram illustrates an overview of the

developed prototype and the operating environment. Furthermore, UML diagrams were

drawn to present all the software components. The developed prototype makes use of a

particular honeypot called Cowrie, which logs login attempts and brute force attacks.

Machine learning was conducted using an open source tool known as WEKA. The prototype

works on traffic directed to a gateway on a home network. A web interface was also

designed to filter the classification results in an understood format. Software testing was

conducted to ensure that the functionality written for the prototype works as it was intended

to.

This project has proved to be flexible and the system developed is effective and capable of

distinguishing between malicious and non-malicious attempts. A better approach than initially

proposed was established as there were sufficient mixed external attempts to test the

system.

51

5.2 Limitations

To begin with, the main limitation of this prototype is the limited amount of attributes that are

used for machine learning. Furthermore, the system was tested on a home network, limiting

to a certain extent the amount of traffic targeted towards the network. Also, machine learning

techniques were implemented using one tool, WEKA, and one classifier was used as time

was limited. The prototype developed is near-real time, given that the automation process

has a time delay of one minute.

5.3 Future Work

The prototype architecture was designed in such a way to allow extensibility to the work

completed. Future work in relation to this dissertation may feature the inclusion of more

honeypots for an improved intrusion detection system. An increase in attributes during

feature selection would also be ideal. The use of more attributes in machine learning will

increase accuracy and reliability. Moreover, it would be interesting to implement and

compare different classifiers in the machine learning phase, such as support vector machine

(SVM), to see which is more accurate. Finally, the proposed system can be deployed on

physical hardware in a corporate network instead of a small home network.

52

References

Altwaijry, H. (2011). Bayesian based intrusion detection system. Lecture Notes in

Electrical Engineering. [Online]. 170 LNEE (1). p.pp. 29–44. Available from:

http://dx.doi.org/10.1016/j.jksuci.2011.10.001.

Boer, P. De & Pels, M. (2005). Host-based Intrusion Detection Systems. Amsterdam

University.

Bringer, M.L., Chelmecki, C.A. & Fujinoki, H. (2012). A Survey: Recent Advances

and Future Trends in Honeypot Research. International Journal of Computer

Network and Information Security. 4 (10). p.pp. 65–77.

Cohen, F. (1998). A Note on the Role of Deception in Information Protection.

Computer & Security. 17 (6). p.pp. 483–506.

Denning, P.J. (1989). The ARPANET after twenty years. American Scientist. 77 (6).

p.pp. 1–18.

Deutsche Telekom AG (2016). T-Pot 16.03 - Enhanced Multi-Honeypot Platform.

[Online]. 2016. Available from: http://dtag-dev-

sec.github.io/mediator/feature/2016/03/11/t-pot-16.03.html. [Accessed: 14 May

2016].

Elmer-DeWitt, P., Murphy, J. & Krance, M. (1983). The 414 Gang Strikes Again.

Time. [Online]. 122 (9). p.p. 77. Available from:

http://proxyiub.uits.iu.edu/login?url=http://search.ebscohost.com/login.aspx?dir

ect=true&db=aph&AN=54226204&site=ehost-live&scope=site.

Fosnock, C. (2005). Computer worms: past, present, and future. East Carolina

University. [Online]. Available from:

http://www.hackerzvoice.net/madchat/vxdevl/avtech/Computer Worms: Past,

Present, and Future.pdf.

Gangwar, A. & Sahu, S. (2014). OPEN ACCESS A survey on anomaly and signature

based intrusion detection system (IDS). 4 (4). p.pp. 67–72.

García-Teodoro, P., Díaz-Verdejo, J., Maciá-Fernández, G. & Vázquez, E. (2009).

Anomaly-based network intrusion detection: Techniques, systems and

challenges. Computers & Security. [Online]. 28 (1-2). p.pp. 18–28. Available

from: http://www.sciencedirect.com/science/article/pii/S0167404808000692.

Gupta, V., Singh, M. & Bhalla, V.K. (2014). Pattern Matching Algorithms for

Intrusion Detection and Prevention System : A Comparative Analysis. p.pp. 50–

54.

Hay, A., Cid, D., Bary, R. & Northcutt, S. (2008). OSSEC Host-Based Intrusion

Detection Guide. [Online]. Elsevier. Available from:

http://www.sciencedirect.com/science/article/pii/B9781597492409000041.

[Accessed: 9 May 2016].

Heberlein, L., Dias, G., Levitt, K.N., Mukherjee, B., Wood, J. & Wolber, D. (1990).

A network security monitor. S&P. [Online]. p.pp. 296 – 304. Available from:

53

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=63859.

Hoque, M.S., Mukit, M.A., Bikas, M.A.N. & Sazzadul Hoque, M. (2012). An

Implementation of Intrusion Detection System Using Genetic Algorithm.

International Journal of Network Security Its Applications. [Online]. 4 (2). p.pp.

109–120. Available from: http://www.airccse.org/journal/nsa/0312nsa08.pdf.

Intel (2002). Intel® Hyper-Threading Technology. [Online]. 2002. Available from:

http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-

threading/hyper-threading-technology.html. [Accessed: 14 May 2016].

Jain, A., Sharma, S. & Sisodia, M. (2011). Network Intrusion Detection by Using

Supervised and Unsupervised Machine Learning Techniques: A Survey.

International Journal of Computer …. [Online]. 1 (3). p.pp. 14–20. Available

from: http://www.ijctee.org/files/Issuethree/IJCTEE_1111_03.pdf.

Kabila, R. (2008). Network Based Intrusion Detection and Prevention Systems in IP-

Level Security Protocols. 2 (10). p.pp. 661–667.

Khandagale, V. V & Kalshetty, Y. (2013). Review and Discussion on different

techniques of Anomaly Detection Based and Recent Work. 2 (10). p.pp. 3214–

3218.

Kintana, C. (2006). History & Impact of Hacking : Final Paper The Word ‘ Hacker ’.

Koch, R., Stelte, B. & Golling, M. (2012). Attack trends in present computer

networks. 2012 4th International Conference on Cyber Conflict, 2012 CYCON.

p.pp. 1–12.

Korčák, M., Lámer, J. & Jakab, F. (2014). Intrusion Prevention/Intrusion Detection

System (Ips/Ids) for Wifi Networks. International Journal of Computer

Networks & Communications. [Online]. 6 (4). p.pp. 77–89. Available from:

http://airccse.org/journal/cnc/6414cnc07.pdf.

Kotsiantis, S.B. (2007). Supervised machine learning: A review of classification

techniques. Informatica. [Online]. 31. p.pp. 249–268. Available from:

http://books.google.com/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=

PA3&dq=survey+machine+learning&ots=CVsyuwYHjo&sig=A6wYWvywU8

XTc7Dzp8ZdKJaW7rc\npapers://5e3e5e59-48a2-47c1-b6b1-

a778137d3ec1/Paper/p800\nhttp://www.informatica.si/PDF/31-3/11_Kotsiantis

- S.

Kulhalli, K. V & Khot, S.R. (2014). Network Based Intrusion Detection Using

Honey pot Deception II System Working. (April). p.pp. 805–810.

Letou, K. & Devi, D. (2013). Host-based Intrusion Detection and Prevention System

(HIDPS). 69 (26). p.pp. 27–33.

Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,

Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K. & Zissman,

M.A. (2000). Evaluating intrusion detection systems: the 1998 DARPA off-line

intrusion detection evaluation. Proceedings DARPA Information Survivability

Conference and Exposition. 2. p.pp. 12–26.

Malav, S., Avinash, M.S., Satish, N.S. & Sandeep, S.C. (2016). Network Security

Using IDS , IPS & Honeypot. 2 (2). p.pp. 27–30.

54

Marinova-Boncheva, V. (2007). A Short Survey of Intrusion Detection Systems *.

Problems of Engineering Cybernetics and Robotics. 58. p.pp. 23–30.

Mary, J.V. & Devi, P.G. (2013). Snort Rule Technique For Detecting Worm Attacks.

2 (11). p.pp. 273–277.

Mokube, I. & Adams, M. (2007). Honeypots : Concepts , Approaches , and

Challenges. p.pp. 321–326.

Noel, S. & Jajodia, S. (2007). Attack Graphs for Sensor Placement , Alert

Prioritization , and Attack Response. Cyberspace Research Workshop. p.pp. 1–

8.

Oluwatosin, H.S. (2014). Client-Server Model. IOSR Journal of Computer

Engineering. 16 (1). p.pp. 67–71.

Oosterhof, M. (2015). Cowrie Honeypot. [Online]. 2015. Available from:

http://www.micheloosterhof.com/cowrie/. [Accessed: 23 May 2016].

Parande, V. & Kori, P.S. (2015). Host Based Intrusion Detection System.

International Journal of Sciene and Research. 4 (4). p.pp. 559–561.

Portokalidis, G. & Bos, H. (2007). SweetBait: Zero-hour worm detection and

containment using low- and high-interaction honeypots. Computer Networks.

[Online]. 51 (5). p.pp. 1256–1274. Available from:

http://www.sciencedirect.com/science/article/pii/S138912860600243X.

Prasad.B, R., Abraham, A., Abhinav, A., Gurlahosur, S. V & Srinivasa, Y. (2011).

Design and Efficient Deployment of honeypot and dynamic rule based live

network intrusion collaborative system. 3 (2). p.pp. 52–65.

Price, D. (2015). Surprising Facts and Stats About The Big Data Industry ».

[Online]. 2015. Available from: http://cloudtweaks.com/2015/03/surprising-

facts-and-stats-about-the-big-data-industry/. [Accessed: 8 May 2016].

PwC (2015). 2015 INFORMATION SECURITY BREACHES SURVEY.

Roesch, M. (1999). Snort: Lightweight Intrusion Detection for Networks. LISA ’99:

13th Systems Administration Conference. [Online]. p.pp. 229–238. Available

from:

http://static.usenix.org/publications/library/proceedings/lisa99/full_papers/roesc

h/roesch.pdf.

Scarfone, K. & Mell, P. (2007). Guide to Intrusion Detection and Prevention Systems

(IDPS) Recommendations of the National Institute of Standards and

Technology. Nist Special Publication. [Online]. 800-94. p.p. 127. Available

from:

http://www.reference.com/go/http://csrc.ncsl.nist.gov/publications/nistpubs/800-

94/SP800-94.pdf.

Sharma, H. (2013). Crontab – Quick Reference | Admin’s Choice - Choice Of Unix

And Linux Administrators. [Online]. 2013. Available from:

http://www.adminschoice.com/crontab-quick-reference. [Accessed: 21 May

2016].

Simon, P. (2013). Too Big to Ignore: The Business Case for Big Data. 1st Ed. Wiley.

55

Spitzner, L. (2002). Honeypots: Tracking Hackers. Addison Wesley.

Stallings, W., Bauer, M. & Hirsch, E.M. (2014). Computer Security Principles and

Practice. 3rd Ed. United States of America: Pearson Education.

Taylor, P. & Hayatle, O. (2013). A Markov Decision Process Model for High

Interaction Honeypots. Information Security Journal: A Global Perspective.

[Online]. 22:4, 159- (October 2014). p.pp. 37–41. Available from:

http://dx.doi.org/10.1080/19393555.2013.828802.

Tsai, C.F., Hsu, Y.F., Lin, C.Y. & Lin, W.Y. (2009). Intrusion detection by machine

learning: A review. Expert Systems with Applications. [Online]. 36 (10). p.pp.

11994–12000. Available from: http://dx.doi.org/10.1016/j.eswa.2009.05.029.

Turban, E., Lee, J.K., King, D., McKay, J. & Marshall, P. (2007). Building e-

commerce applications and infrastructure. In: Electronic Commerce : A

Managerial Perspective. Pearson, p. 27.

Uzun, E. (2014). An Automated Bot Detection System through Honeypots for Large-

Scale. p.pp. 255–270.

VMWARE (2014). What Is a Virtual Machine? VMware vSphere 4 - ESX and

vCenter Server. [Online]. p.p. One. Available from:

http://pubs.vmware.com/vsphere-4-esx-

vcenter/index.jsp?topic=/com.vmware.vsphere.vmadmin.doc_41/vsp_vm_guide

/about_vms_in_vsp_datacenter/c_what_is_a_virtual_machine.html.

Vokorokos, L. & BaláŽ, A. (2010). Host-based intrusion detection system. INES

2010 - 14th International Conference on Intelligent Engineering Systems,

Proceedings. p.pp. 43–47.

Walker, B. (2015). Every Day Big Data Statistics - 2.5 Quintillion Bytes of Data

Created Daily -. [Online]. 2015. Available from:

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-

of-data-created-daily/. [Accessed: 29 January 2016].

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan,

G.J., Ng, A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J. &

Steinberg, D. (2008). Top Ten Algorithms in Data Mining. 1st Ed. [Online].

Chapman and Hall/CRC. Available from:

http://link.springer.com/10.1007/s10115-007-0114-2.

Yadav, P. & Singh, D. (2013). A Review on Network Intrusion Detection System. 4

(9). p.pp. 3842–3847.

Zou, Y. & Chakrabarty, K. (2003). Sensor Deployment and Target Localization

Based on Virtual Forces. Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications (INFOCOM). 2 (C). p.pp. 1293 – 1303.

56

Appendix A - Scripts

logretreiver.sh

1. #!/bin/sh

2.

3. echo "Retreiving all logs from their directories"

4.

5. # Start retreiving files from their directory to put them in destination folder

6. echo

7. sleep 1

8. echo "---"

9. #Retreiving Logs & JSON file if available

10.

11. #PATH = /home/tsec

12. #Getting Cowrie

13. sudo cp /data/cowrie/log/cowrie.log ~/alllogs

14.

15. sudo cp /data/cowrie/log/cowrie.json ~/alljson

16.

17. echo "Cowrie files successfully retreived..100%"

18.

19. sleep 1

20.

21. #Getting Dionaea

22. sudo cp /data/dionaea/log/dionaea.log ~/alllogs

23.

24. sudo cp /data/dionaea/log/dionaea.json ~/alljson

25.

26. sudo cp /data/ews/dionaea/ews.json ~/alljson

27.

28. echo "Dionaea files successfully retreived..100%"

29.

30. sleep 1

31.

32. #Getting Elasticpot

33. sudo cp /data/elasticpot/log/* ~/alllogs

34.

35.

36. echo "Elasticpot searches retreived..100%"

37.

38. sleep 1

39. #Getting glastopf

40. sudo cp /data/glastopf/log/glastopf.log ~/alllogs

41.

42. sleep 1

57

43.

44. echo "Glastopf files retreived..100Â%"

45. #Getting HoneyTrap (check attacks folder and copy all registered attacks maybe?)

46. sudo cp /data/honeytrap/log/attacker.log ~/alllogs

47.

48. sudo cp /data/honeytrap/log/honeytrap.log ~/alllogs

49.

50. sleep 1

51.

52. echo "HoneyTrap files retreived..100%"

53. #Getting Suricata

54. sudo cp /data/suricata/log/eve.json ~/alljson

55. sudo cp /data/suricata/log/p0f.json ~/alljson

56.

57. echo "Suricata files retreived..100%"

58.

59. #Open connection with Honeydrive & enter into shell

60.

61. #ssh honeydrive@192.168.0.18

62.

63. #Syncing and transferring files to a remote linux machine a.k.a HoneyDrive III

64.

65. #sudo rsync -a --progress ~/alllogs/*

honeydrive@192.168.0.18:~/Desktop/Transfer/Logs

66. #sudo rsync -a --progress ~/alljson/*

honeydrive@192.168.0.18:~/Desktop/Transfer/JSON

67. echo

68.

69. #copying files from root directory to tsec directory

70. #if run manually from tsec user gives same file warning

71. sudo cp ~/alljson/* /home/tsec/alljson

72. sudo cp ~/alllogs/* /home/tsec/alllogs

73.

74. #this is being done in extractor script

75. #sudo cp ~/alllogs/* /home/tsec/prototype/logs

76.

77. echo "Files have been transferred to the secret location"

78.

79. echo

80.

81. echo "Script run successfully :)"

82.

83. echo "--"

84.

85. #clearing previous text for easier maintainability

86. > /home/tsec/prototype/debuglogs/retreiveput.log

87.

88.

89. echo "Retreive successful: $(date)" >>

/home/tsec/prototype/debuglogs/retreiveput.log

58

90.

91. echo $(date)

92. echo

93. # need for rsync or else copy will do just fine to overwrite the data?

94. #!!! use rsync better

95.

96. #we can rsync to a remote host once we cron this script. Check if copy replaces

97.

98. # From this point forward we use ftp to send all these files to somewhere outside the

machine

extractor.sh

1. #!/bin/bash

2.

3. #copies logs from tsec/root to prototype/logs

4. #if runs in root, no prob

5. sudo cp ~/alllogs/* /home/tsec/prototype/logs

6.

7. #extracts the last ten entries from file

8.

9. #sudo grep "GMT" /home/tsec/prototype/logs/attacker.log | tail -n 10 >

/home/tsec/prototype/logs/extractedlogs/attackerresult.log

10. #sudo grep "GMT" /home/tsec/prototype/logs/attacker.log | uniq | tail -n 10 >

/home/tsec/prototype/logs/extractedlogs/attackerresult.log

11.

12.

13. #we can add a second match phrase to this if it needs be word1|word2

14. #apparently grep is case sensitive

15. #sudo grep "New connection" /home/tsec/prototype/logs/cowrie.log | grep "Remote

SSH version" | tail -n 10 > /home/tsec/prototype/logs/extractedlogs/cowrieresult.log

16. #maybe we can add second search string for getting remote ssh version?

17.

18. sudo grep 'New connection\|login attempt' /home/tsec/prototype/logs/cowrie.log |

uniq -u | tail -n 100 > /home/tsec/prototype/logs/extractedlogs/cowrieresult.log

19.

20.

21.

22. #sudo grep "alert" /home/tsec/prototype/logs/elasticpot.log | sort -u -t, -k2,8 | tail -n

10 > /home/tsec/prototype/logs/extractedlogs/elasticpotresult.log

23.

24. #this glastopf grep was chosen since we need an IP to be classified as non-

maliciousi.emy ip

25. #sudo grep 'GET\|POST' /home/tsec/prototype/logs/glastopf.log | sort -uk4,4 | tac |

sort -k4,4 | sort -k1,2 | tail -n 20 >

/home/tsec/prototype/logs/extractedlogs/glastopfresult.log

59

26.

27.

28. sudo grep 'GET\|POST' /home/tsec/prototype/logs/glastopf.log | sort -uk7 | tail -n

20 > /home/tsec/prototype/logs/extractedlogs/glastopfresult.log

29.

30.

31. #sudo grep "GET" /home/tsec/prototype/logs/glastopf.log | grep -vF 141.8.83.213 |

sort -k4,4 | tac | sort -uk4,4 | sort -k1,2 | tail -n 10 >

/home/tsec/prototype/logs/extractedlogs/glastopfresult.log

32.

33.

34. #clearing previous text for easier readibility

35. > /home/tsec/prototype/debuglogs/extractorput.log

36.

37. echo "Filter Operations Complete: $(date)" >>

/home/tsec/prototype/debuglogs/extractorput.log 2>&1

38.

39.

40. echo "Terminal Out OK!"

prototype.prg

1. #!/usr/bin/perl -w

2.

3. $path1 = "/home/tsec/prototype/logs/extractedlogs/attackerresult.log";

4. $path2 = "/home/tsec/prototype/logs/extractedlogs/cowrieresult.log";

5. $path3 = "/home/tsec/prototype/logs/extractedlogs/elasticpotresult.log";

6. $path4 = "/home/tsec/prototype/logs/extractedlogs/glastopfresult.log";

7. $honeytrap = ">/home/tsec/prototype/honeycsv/honeytrap.csv";

8. $cowrie = ">/home/tsec/prototype/honeycsv/cowrie.csv";

9. $elasticpot = ">/home/tsec/prototype/honeycsv/elasticpot.csv";

10. $glastopf = ">/home/tsec/prototype/honeycsv/glastopf.csv";

11.

12. $end = "";

13.

14. #function definition #Pattern for attackerlog only

15. sub honeytrapExtractor(){

16. if(open(FILE1, $honeytrap) or die "Can't open '$honeytrap': $!"){

17.

18. #

19.

20. }

21. else{ #the code over here is useless given that the ">dir" create file even if doesnt

exists.

22. my $existingDirectory = "~/prototype";

http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html

60

23. mkdir $existingDirectory unless -d $existingDirectory; #checking if dir already exists,

else make it

24.

25. open(FILE2, ">", "$existingDirectory/attacker.csv");

26. open(LOG, $path1) or die "Can't open 'path1': $!";

27.

28. print FILE2 "Protocol,SourceIP,SourcePort,FileSize,Malicious\n";

29.

30. while(my $lines = <LOG>){

31.

32. my ($protocol, $ip, $port, $size) = (split /[\s:()]+/,$lines)[6,7,8,-2];

33.

34. print FILE2 join ",",($protocol, $ip, $port, $size, $end);

35. print FILE2 "\n";

36. }

37.

38. }

39.

40. #open(FILE, $attacker) or die "Can't open '$attacker': $!";

41.

42. print FILE1 "Protocol,SourcePort,FileSize,Malicious\n";

43. open(LOG, $path1) or die "Can't open '$path1': $!";

44. while(my $lines = <LOG>){

45.

46. #my ($protocol, $ip, $port, $size) = (split /[\s:()]+/,$lines)[6,7,8,-2];

47. my($protocol, $port, $size) = (split /[\s:()]+/,$lines)[6,8,-2];

48. print FILE1 join ",",($protocol, $port, $size, $end);

49. print FILE1 "\n";

50.

51.

52. }

53. }

54.

55.

56. sub cowrieExtractor(){

57.

58. open(FILE2, $cowrie) or die "Can't open '$cowrie': $!";

59.

60. open(LOG2, $path2) or die "Can't open '$path2': $!";

61.

62. my (%rept, %ip_tot);

63. my ($ip, $port);

64.

65. while (my $line = <LOG2>)

66. {

67. if ($line =~ /New connection/) {

68. ($ip, $port) = $line =~ /New connection:\s+([^:]+):(\d+)/;

69. next;

70. }

71. elsif (!$ip or !$port) { next } # First lines come before New connection

http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html

61

72.

73. my ($usr, $status) = $line =~ m/login attempt\s+\[([^\]]+)\]\s+(\w+)/;

74. if ($usr and $status) {

75. $rept{$port}{$ip}{$usr}{$status}++;

76. $ip_tot{$ip}{$status}++;

77. }

78. else { warn "Line with an unexpected format:\n$line" }

79. }

80.

81. print FILE2 "Port,Status,AttemptOnPort,AttemptsOnIP,Malicious\n";

82. foreach my $port (sort keys %rept) {

83. foreach my $ip (sort keys %{$rept{$port}}) {

84. foreach my $usr (sort keys %{$rept{$port}{$ip}}) {

85. foreach my $stat (sort keys %{$rept{$port}{$ip}{$usr}}) {

86. print FILE2 "$port,$stat,$rept{$port}{$ip}{$usr}{$stat}";

87. print FILE2 ",$ip_tot{$ip}{$stat},\n";

88. }

89. }

90. }

91. }

92.

93. #prints IP and Number of Occurrences based on that IP for testing purposes

94.

95. #print "\n";

96. #print "IP,Status,Occurences\n";

97. #foreach my $ip (sort keys %ip_tot) {

98. # foreach my $stat (sort keys %{$ip_tot{$ip}}) {

99. # print "$ip,$stat,$ip_tot{$ip}{$stat}\n";

100. # }

101. #}

102.

103.

104. # if all variables are not equal to null, then print to file

105. #if($ip && $port && $usr && $pass && $status ne ""){

106. #print FILE2 join ",",($ip, $port, $usr, $pass, $status);

107. #print FILE2 "\n";

108.

109.

110.

111. }

112.

113. sub counter(){

114.

115. $result = 0;

116. #open(FILE2, $cowrie) or die "Can't open '$cowrie': $!";

117. while(my $otherlines = <LOG2>){

118.

119. if($otherlines =~ /login attempt/){

120. ($user, $password) = (split /[\s:\[\]\/]+/, $otherlines)[-3,-2];

121. if($_[1] =~ /$user/ && $_[2] =~ /$password/){

http://perldoc.perl.org/functions/warn.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html

62

122. $result++;

123. }#if ip matches i think i have to do this with split

124.

125. #print "TEST\n";

126. }

127. #print "Combo $_[0] and $_[1]\n";

128.

129. }

130. #print "$result";

131. return $result;

132. }

133.

134.

135. sub elasticpotExtractor(){

136.

137. open(FILE3, $elasticpot) or die "Can't open '$elasticpot': $!";

138. open(LOG3, $path3) or die "Can't open 'path3': $!";

139.

140. #attributes here

141. print FILE3

"EventType,SourcePort,DestinationPort,HoneypotName,Malicious\n";

142.

143. while(my $lines = <LOG3>){

144.

145. my($type, $ip, $port, $destip, $destport, $potname) = (split /[{}":,]+/,

$lines)[6,8,10,12,14,17];

146.

147. print FILE3 join ",",($type, $port, $destport, $potname, $end);

148. print FILE3 "\n";

149.

150. }

151.

152. }

153.

154. sub glastopfExtractor(){

155.

156. open(FILE4, $glastopf) or die "Can't open '$glastopf': $!";

157. open(LOG4, $path4) or die "Can't open '$path4': $!";

158.

159. #attributes here(get srcip for now and what was actually posted or

requested[get])

160. #it does not matter if we get the same ip no of time as long as the get is

unique

161. print FILE4 "Method,ContentRequested,Malicious\n";

162.

163. while(my $lines = <LOG4>){

164.

165. my($ip, $method, $content, $target) = (split /[\s:]+/, $lines)[6,7,8,10];

166.

167. print FILE4 join ",",($method, $content, $end);

http://perldoc.perl.org/functions/return.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html

63

168. print FILE4 "\n";

169.

170. }

171.

172. }

173.

174. close(LOG);

175. close(FILE1);

176. close(FILE2);

177.

178. close(LOG2);

179. close(FILE2);

180.

181. close(LOG3);

182. close(FILE3);

183.

184. close(LOG4);

185. close(FILE4);

186.

187. #honeytrapExtractor();

188. cowrieExtractor();

189. #elasticpotExtractor();

190. #glastopfExtractor();

191. print "Feature Selection and formatting complete!!\n";

converter.sh

1. #NOTE: We might have to give the exact path since we are running from root.

2.

3.

4. #These are for training #WE RUN THESE ONCE. THEN ALWAYS APPEND

5.

6. #Converter cmd for Cowrie

7. #var=$(echo -e "\052") #only used if we get raw usr and password

8. path=/home/tsec

9.

10. #RUN ONLY ONCE THEN MODIFY MALICIOUS TO {0,1}

11. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/cowrie.csv >

$path/prototype/honeycsv/trainfiles/cowrie.arff

12.

13. #Converter for Glastopf

14.

15. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/glastopf.csv >

$path/prototype/honeycsv/trainfiles/glastopf.arff

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/print.html

64

16.

17. #Converter for Elasticpot

18.

19. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/elasticpot.csv >

$path/prototype/honeycsv/trainfiles/elasticpot.arff

20.

21. #Converter for Honeytrap

22.

23. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/honeytrap.csv >

$path/prototype/honeycsv/trainfiles/honeytrap.arff

24. echo test

25.

26.

27. #Now we call the J48 classifier to work on training files to create models #WE DO

THIS ONLY ONCE UNLESS NEEDED TO ADD A NEW ENTRY

28. #if this gives error remove cp

29. sudo java -cp $path/prototype/weka-3-9-0/weka.jar weka.classifiers.trees.J48 -t

$path/prototype/honeycsv/trainfiles/cowrie.arff -d

$path/prototype/honeycsv/models/cowrie.model

30.

31. #java -cp $path/prototype/weka-3-9-0/weka.jar weka.classifiers.trees.J48 -t

$path/prototype/honeycsv/trainfiles/glastopf.arff -d

$path/prototype/honeycsv/models/glastopf.model

32.

33. #java -cp $path/prototype/weka-3-9-0/weka.jar weka.classifiers.trees.J48 -t

$path/prototype/honeycsv/trainfiles/elasticpot.arff -d

$path/prototype/honeycsv/models/elasticpot.model

34.

35. #java -cp $path/prototype/weka-3-9-0/weka.jar weka.classifiers.trees.J48 -t

$path/prototype/honeycsv/trainfiles/honeytrap.arff -d

$path/prototype/honeycsv/models/honeytrap.model

36. echo test2

37.

38. echo "Operation Complete $date" > $path/prototype/debuglogs/converterput.log

extractortest.sh

1. #!/bin/bash

2.

3. #copies logs from tsec/root to prototype/logs

4. #if runs in root, no prob

5. sudo cp ~/alllogs/* /home/tsec/prototype/logs

6.

7. #extracts the last ten entries from file

65

8.

9. #sudo grep "GMT" /home/tsec/prototype/logs/attacker.log | tail -n 10 >

/home/tsec/prototype/logs/extractedlogs/attackerresult.log

10. #sudo grep "GMT" /home/tsec/prototype/logs/attacker.log | uniq | tail -n 1 >

/home/tsec/prototype/logs/extractedlogs/attackerresulttest.log

11.

12.

13. #we can add a second match phrase to this if it needs be word1|word2

14. #apparently grep is case sensitive

15. #sudo grep "New connection" /home/tsec/prototype/logs/cowrie.log | grep "Remote

SSH version" | tail -n 10 > /home/tsec/prototype/logs/extractedlogs/cowrieresult.log

16. #maybe we can add second search string for getting remote ssh version?

17.

18. sudo grep 'New connection\|login attempt' /home/tsec/prototype/logs/cowrie.log |

uniq -u | tail -n 100 > /home/tsec/prototype/logs/extractedlogs/cowrieresulttest.log

19.

20. sudo cp /home/tsec/prototype/honeycsv/testfiles/cowrietest.arff

/home/tsec/prototype/honeycsv/testfiles/cowrietesttest.arff

21.

22. #sudo grep "alert" /home/tsec/prototype/logs/elasticpot.log | sort -u -t, -k2,8 | tail -n 1

> /home/tsec/prototype/logs/extractedlogs/elasticpotresulttest.log

23.

24. #this glastopf grep was chosen since we need an IP to be classified as non-

maliciousi.emy ip

25. #sudo grep 'GET\|POST' /home/tsec/prototype/logs/glastopf.log | sort -k4,4 | tac |

sort -uk4,4 | sort -k1,2 | tail -n 1 >

/home/tsec/prototype/logs/extractedlogs/glastopfresulttest.log

26.

27. #sudo grep "GET" /home/tsec/prototype/logs/glastopf.log | grep -vF 141.8.83.213 |

sort -k4,4 | tac | sort -uk4,4 | sort -k1,2 | tail -n 10 >

/home/tsec/prototype/logs/extractedlogs/glastopfresult.log

28.

29.

30. #clearing previous text for easier readibility

31. > /home/tsec/prototype/debuglogs/extractorputtest.log

32.

33. echo "Filter Operations Complete: $(date)" >>

/home/tsec/prototype/debuglogs/extractorputtest.log 2>&1

34.

35.

36. echo "Terminal Out OK!"

prototypetest.prg

1. #!/usr/bin/perl -w

2.

3. $path1 = "/home/tsec/prototype/logs/extractedlogs/attackerresulttest.log";

4. $path2 = "/home/tsec/prototype/logs/extractedlogs/cowrieresulttest.log";

66

5. $path3 = "/home/tsec/prototype/logs/extractedlogs/elasticpotresulttest.log";

6. $path4 = "/home/tsec/prototype/logs/extractedlogs/glastopfresulttest.log";

7. $honeytrap = ">/home/tsec/prototype/honeycsv/honeytraptest.csv";

8. $testcowrie = "+>/home/tsec/prototype/honeycsv/testcowrie.log";

9. $cowrie = ">>/home/tsec/prototype/honeycsv/testfiles/cowrietesttest.arff";

10. $elasticpot = ">/home/tsec/prototype/honeycsv/elasticpottest.csv";

11. $glastopf = ">/home/tsec/prototype/honeycsv/glastopftest.csv";

12.

13.

14.

15. $end = "0";

16.

17. #function definition #Pattern for attackerlog only

18. sub honeytrapExtractor(){

19. if(open(FILE1, $honeytrap) or die "Can't open '$honeytrap': $!"){

20.

21. #

22.

23. }

24. else{ #the code over here is useless given that the ">dir" create file even if doesnt

exists.

25. my $existingDirectory = "~/prototype";

26. mkdir $existingDirectory unless -d $existingDirectory; #checking if dir already exists,

else make it

27.

28. open(FILE2, ">", "$existingDirectory/honeytraptest.csv");

29. open(LOG, $path1) or die "Can't open 'path1': $!";

30.

31. print FILE2 "Protocol,SourceIP,SourcePort,FileSize,Malicious\n";

32.

33. while(my $lines = <LOG>){

34.

35. my ($protocol, $ip, $port, $size) = (split /[\s:()]+/,$lines)[6,7,8,-2];

36.

37. print FILE2 join ",",($protocol, $ip, $port, $size, $end);

38. print FILE2 "\n";

39. }

40.

41. }

42.

43. #open(FILE, $attacker) or die "Can't open '$attacker': $!";

44.

45. print FILE1 "Protocol,SourcePort,FileSize,Malicious\n";

46. open(LOG, $path1) or die "Can't open '$path1': $!";

47. while(my $lines = <LOG>){

48.

49. my ($protocol, $port, $size) = (split /[\s:()]+/,$lines)[6,8,-2];

50.

51. print FILE1 join ",",($protocol, $port, $size, $end);

52. print FILE1 "\n";

http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/mkdir.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html

67

53.

54.

55. }

56. }

57.

58.

59. sub cowrieExtractor(){

60.

61. open(FILE2, $testcowrie) or die "Can't open '$testcowrie': $!";

62.

63. open(LOG2, $path2) or die "Can't open '$path2': $!";

64.

65.

66. my (%rept, %ip_tot);

67. my ($ip, $port);

68.

69. while (my $line = <LOG2>)

70. {

71. if ($line =~ /New connection/) {

72. ($ip, $port) = $line =~ /New connection:\s+([^:]+):(\d+)/;

73. next;

74. }

75. elsif (!$ip or !$port) { next } # First lines come before New connection

76.

77. my ($usr, $status) = $line =~ m/login attempt\s+\[([^\]]+)\]\s+(\w+)/;

78. if ($usr and $status) {

79. $rept{$port}{$ip}{$usr}{$status}++;

80. $ip_tot{$ip}{$status}++;

81. }

82. else { warn "Line with an unexpected format:\n$line" }

83. }

84.

85.

86. #print FILE2 "Port,Status,AttemptOnPort,AttemptsOnIP,Malicious\n";

87. foreach my $port (sort keys %rept) {

88. foreach my $ip (sort keys %{$rept{$port}}) {

89. foreach my $usr (sort keys %{$rept{$port}{$ip}}) {

90. foreach my $stat (sort keys %{$rept{$port}{$ip}{$usr}}) {

91. print FILE2 "$port,$stat,$rept{$port}{$ip}{$usr}{$stat},";

92. print FILE2 "$ip_tot{$ip}{$stat},$end\n";

93. }

94. }

95. }

96. }

97. #close (FILE2);

98.

99. #open (FILE2, $testcowrie);

100. seek FILE2, 0, 0;

101. chomp(my @lines = <FILE2>);

102. my $last_one = pop @lines;

http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/warn.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/sort.html
http://perldoc.perl.org/functions/keys.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/seek.html
http://perldoc.perl.org/functions/chomp.html
http://perldoc.perl.org/functions/pop.html

68

103.

104. open (FILE10, $cowrie) or die "Can't open '$cowrie': $!";

105.

106. print FILE10 "$last_one\n";

107. close (FILE10);

108.

109.

110. #print "\n";

111. #print "IP,Status,Occurences\n";

112. #foreach my $ip (sort keys %ip_tot) {

113. # foreach my $stat (sort keys %{$ip_tot{$ip}}) {

114. # print "$ip,$stat,$ip_tot{$ip}{$stat}\n";

115. # }

116. #}

117.

118.

119.

120. # if all variables are not equal to null, then print to file

121. #if($ip && $port && $usr && $pass && $status ne ""){

122. #print FILE2 join ",",($ip, $port, $usr, $pass, $status);

123. #print FILE2 "\n";

124.

125. }

126.

127. sub elasticpotExtractor(){

128.

129. open(FILE3, $elasticpot) or die "Can't open '$elasticpot': $!";

130. open(LOG3, $path3) or die "Can't open 'path3': $!";

131.

132. #attributes here

133. print FILE3

"EventType,SourcePort,DestinationPort,HoneypotName,Malicious\n";

134.

135. while(my $lines = <LOG3>){

136.

137. my($type, $ip, $port, $destip, $destport, $potname) = (split /[{}":,]+/,

$lines)[6,8,10,12,14,17];

138.

139. print FILE3 join ",",($type, $port, $destport, $potname, $end);

140. print FILE3 "\n";

141.

142. }

143.

144. }

145.

146. sub glastopfExtractor(){

147.

148. open(FILE4, $glastopf) or die "Can't open '$glastopf': $!";

149. open(LOG4, $path4) or die "Can't open '$path4': $!";

150.

http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html

69

151. #attributes here(get srcip for now and what was actually posted or

requested[get])

152. #it does not matter if we get the same ip no of time as long as the get is

unique

153. print FILE4 "Method,ContentRequested,Target,Malicious\n";

154.

155. while(my $lines = <LOG4>){

156.

157. my($ip, $method, $content, $target) = (split /[\s]+/, $lines)[3,5,6,-2];

158.

159. print FILE4 join ",",($method, $content, $target, $end);

160. print FILE4 "\n";

161.

162. }

163.

164. }

165.

166. $logoutput = ">/home/tsec/prototype/debuglogs/prototypetestput.log";

167.

168. open(FILE5, $logoutput) or die "Can't open '$logoutput' :$!";

169. $date = localtime();

170. print FILE5 "Operation successful @ $date";

171. close(FILE5);

172.

173. close(LOG);

174. close(FILE1);

175. close(FILE2);

176.

177. close(LOG2);

178. close(FILE2);

179.

180. close(LOG3);

181. close(FILE3);

182.

183. close(LOG4);

184. close(FILE4);

185.

186. honeytrapExtractor();

187. cowrieExtractor();

188. elasticpotExtractor();

189. glastopfExtractor();

convertertest.sh

1. #!/bin/bash

2.

3. #NOTE: We might have to give the exact path since we are running from root. Hope

not

http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/split.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/join.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/functions/die.html
http://perldoc.perl.org/functions/localtime.html
http://perldoc.perl.org/functions/print.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html
http://perldoc.perl.org/functions/close.html

70

4.

5.

6. path=/home/tsec

7. date=$(date)

8.

9. #Now that all have been converted, next step is to train using J48 Classifier BUT to

do this we need to do what we have done for now for test data

10.

11. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/cowrietest.csv -F "$var"

> $path/prototype/honeycsv/testfiles/cowrietest.arff

12.

13. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/elasticpottest.csv >

$path/prototype/honeycsv/testfiles/elasticpottest.arff

14.

15. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/glastopftest.csv >

$path/prototype/honeycsv/testfiles/glastopftest.arff

16.

17. #sudo java -cp $path/prototype/weka-3-9-0/weka.jar

weka.core.converters.CSVLoader $path/prototype/honeycsv/honeytraptest.csv >

$path/prototype/honeycsv/testfiles/honeytraptest.arff

18.

19.

20. #Use model to put it against testing files #dru has to tell me how to get the output

21. #java -cp weka.classifiers.trees.J48 -l

$path/prototype/honeycsv/models/honeytrap.model -T

$path/prototype/honeycsv/testfiles/honeytraptest.arff >

$path/prototype/honeycsv/results/honeytrap.txt

22.

23. #java -cp weka.classifiers.trees.J48 -l

$path/prototype/honeycsv/models/elasticpot.model -T

$path/prototype/honeycsv/testfiles/elasticpottest.arff >

$path/prototype/honeycsv/results/elasticpot.txt

24.

25. #java -cp weka.classifiers.trees.J48 -l

$path/prototype/honeycsv/models/glastopf.model -T

$path/prototype/honeycsv/testfiles/glastopftest.arff >

$path/prototype/honeycsv/results/glastopf.txt

26.

27. java -cp $path/prototype/weka-3-9-0/weka.jar weka.classifiers.trees.J48 -l

$path/prototype/honeycsv/models/cowrie.model -T

$path/prototype/honeycsv/testfiles/cowrietesttest.arff >

$path/prototype/honeycsv/results/cowrie.txt

28.

29. sudo cp $path/prototype/honeycsv/results/cowrie.txt /root/

30.

31. #sudo rm $path/prototype/honeycsv/testfiles/cowrietesttest.arff

32.

71

33.

34.

35.

36.

37. #java -cp weka.classifiers.trees.J48 -t

$path/prototype/honeycsv/trainfiles/honeytrap.arff -T

$path/prototype/honeycsv/testfiles/honeytraptest.arff > $path/plswork.log 2>&1

38.

39.

40. echo "Operation Complete $date" >>

$path/prototype/debuglogs/converterputtest.log

uploader.sh

1. #!/bin/bash

2.

3.

4. HOST='ftp.byethost31.com'

5. USER='b31_17942337'

6. PASSWD='zammit20'

7.

8. ftp -n $HOST <<END_SCRIPT

9. quote USER $USER

10. quote PASS $PASSWD

11. passive

12. cd /htdocs

13. send cowrie.txt

14. quit

15. END_SCRIPT

16. exit 0

72

Appendix B - Web Interface

index.php

1. <html>

2. <head>

3. <title>DZ Prototype</title>

4. <link rel="icon" type="img/ico" href="images/favicon.jpg">

5. <meta http-equiv="refresh" content="30">

6. <style>

7. body {

8. background-image:url("https://www.greenville.edu/digital-signage/default-

backgrounds/greybg1.png");

9. }

10. a:link {

11. color: white;

12. text-decoration: none;

13. }

14.

15. /* visited link */

16. a:visited {

17. color: white;

18. text-decoration: none;

19. }

20.

21. /* mouse over link */

22. a:hover {

23. color: black;

24. text-decoration: none;

25. }

26.

27. /* selected link */

28. a:active {

29. color: yellow;

30. text-decoration: none;

31. }

32.

33. footer

34. {

35.

36. }

37.

38. footer *

39. {

40. display: block;

41. }

42.

43. #footer {

44. background:#ffab62;

http://december.com/html/4/element/html.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/title.html
http://december.com/html/4/element/link.html
http://december.com/html/4/element/meta.html
http://december.com/html/4/element/style.html

73

45. width:100%;

46. height:100px;

47. position:absolute;

48. bottom:0;

49. left:0;

50. }

51. h3 {

52. text-align:center;

53. }

54. </style>

55. </head>

56. <body>

57. <center>

58. <h1>Welcome to DZ Prototype Testing Area!!</h1>

59. </center>

60. <p></p>

61. <p></p>

62. <p></p>

63. <p style="text-align:center"><img

src="https://diasp.eu/uploads/images/scaled_full_122e075ce77580c93020.jpeg"

alt="It works!!"></p>

64. <p></p>

65. <p></p>

66.

67. <div align="center">

68. <?php

69.

70. $filename = "cowrie.txt";

71. $line = file($filename);

72.

73.

74. if(file_exists($filename)){

75. echo "<h2>Read through file and</h2>";

76. }

77. else{

78. echo "<h2>Upload not successful</h2>";

79. }

80.

81.

82.

83. if(trim($line[15]) == "Correctly Classified Instances 0 0 %") {

84. echo "<h2>Last entry is a Possible Malicious Login

Attempt</h2>";

85. } else {

86. echo "<h2>Status Green</h2>";

87. }

88.

89. function pingAddress($ip) {

90. $pingresult = exec("/bin/ping -n 3 $ip", $outcome, $status);

91. if (0 == $status) {

http://december.com/html/4/element/style.html
http://december.com/html/4/element/head.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/center.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/center.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/img.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/p.html
http://december.com/html/4/element/div.html
http://www.php.net/file
http://www.php.net/file_exists
http://www.php.net/trim
http://www.php.net/exec

74

92. $status = "online.";

93. } else {

94. $status = "offline.";

95. }

96. echo "The host, $ip, is ".$status;

97. }

98.

99. pingAddress("141.8.83.213")

100. ?>

101. <h4>(automagically reloads every 30 seconds)</h4>

102. </div>

103. <div id="footer">

104. <footer>

105. <h3>Created by: Daniel Zammit</h3>

106. <h3><a

href="https://mail.google.com/mail/?view=cm&fs=1&to=dzamm20@gmail.com&su=H

ello%20Daniel!" target="_blank">Contact</h3>

107. </footer>

108. </div>

109. </body>

110. </html>

View publication statsView publication stats

http://december.com/html/4/element/h4.html
http://december.com/html/4/element/font.html
http://december.com/html/4/element/h4.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/h3.html
http://december.com/html/4/element/h3.html
http://december.com/html/4/element/h3.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/a.html
http://december.com/html/4/element/h3.html
http://december.com/html/4/element/div.html
http://december.com/html/4/element/body.html
http://december.com/html/4/element/html.html
https://www.researchgate.net/publication/306017096

	Abstract
	Acknowledgements
	Declaration of Authenticity
	List of Tables
	List of Appendices
	Chapter 1. Introduction
	1.1 The Necessity of Machine Learning in Network Security
	1.2 Objectives of this research

	Chapter 2. Literature Review
	2.1 Host vs Network Intrusion Detection Systems
	2.1.1 Host Intrusion Detection Systems
	2.1.1.1 Types of HIDS
	2.1.1.2 Modern solutions

	2.1.2 Network Intrusion Detection Systems
	2.1.2.1 Sensor Placement
	Inline Sensors
	Passive Sensors

	2.1.2.2 Enhanced NIDS

	2.1.3 Industrial Deployment

	2.2 Honeypot Implementations
	2.2.1 Honeypot Classification
	2.2.2 Applications

	2.3 Augmented Signature Based IDS
	2.3.1 Machine Learning
	2.3.2 Transition from datasets to honeypots

	2.4 Summary

	Chapter 3. Methodology
	3.1 Design and Prototype Development
	3.1.1 UML Diagrams
	3.1.2 Environment Setup
	3.1.2.1 Host Configuration
	3.1.2.2 Test Environment
	3.1.2.3 T-Pot Honeypot Platform

	3.1.3 Software Development

	3.2 Testing

	Chapter 4. Prototype Architecture
	4.1 Prototype Design
	4.1.1 Ubuntu Server UML Diagrams
	4.1.1.1 Class
	4.1.1.2 State Machine

	4.1.2 Web Host Server UML Diagrams
	4.1.2.1 Class
	4.1.2.2 State machine

	4.2 Prototype Development
	4.2.1 Hardware Implementation
	4.2.2 Software Implementation
	4.2.2.1 Virtual and Host Machine Setup
	4.2.2.2 T-Pot Configuration

	4.2.3 Prototype Functionality
	4.2.3.1 General Scripts The first script that was written, logretreiver.sh, is responsible for copying all the logs generated by the honeypots from their respective directory and putting them all in one directory under the tsec user. The following fig...
	4.2.3.2 Preparing data for machine learning There are some similar scripts that are used in this work. Due to the nature of the prototype, two scripts were required for each functionality implemented. Similar scripts were created, which were modified ...
	4.2.3.3 Process Automation

	4.3 Conceptual Model
	4.4 Software Testing
	4.4.1 T-Pot Honeypot Platform

	Chapter 5. Conclusion and Future Work
	5.1 Conclusion
	5.2 Limitations
	5.3 Future Work

	References
	Appendix A - Scripts
	Appendix B - Web Interface

