

School of Design & Informatics

Session 2019/20

CMP505: Advanced Procedural Methods

Labyrinth Generation using Cellular Automaton

Daniel Zammit Student ID 1905316

MSc Computer Games Technology

Table of Contents

Introduction .. 3

Feature Implementation ... 4

User Input ... 4

Cellular Automaton ... 4

A* Search Algorithm ... 5

Post-Processing ... 6

Evaluation ... 7

Limitations .. 7

Reflection .. 7

References .. 8

Introduction

The work conducted in this project revolved around the creation of a 3D DirectX11 scene

using the DirectX Toolkit provided by Microsoft (Walbourn, 2019). The aim was to implement

and utilise an advanced procedural technique that can be used as a gameplay element in a

released game. In order to achieve this goal, cellular automation was implemented to create

a traversable labyrinth were the objective of the game is to find and collect the treasure. A

scene was created were several boxes were placed in a grid formation. Most of these boxes

were converted to obstacles. The player was able to move around the labyrinth. However,

when the player collided with any obstacle, they are returned to the spawn point. When the

treasure was collected, a new level was generated. A skybox was also added for immersion.

Figure 1 - Labyrinth Scene

The scene objects were initialised using DirectX11 API calls using C++ programming language.

A point light was also added using HLSL based on Blinn-Phong reflection model to brighten

the scene. The player camera has free movement in two-dimensional space, as well as 360°

rotation. While playing the game, it is possible to view the next iteration of the cellular

automaton in order to find the treasure more easily. Blur was implemented as a post-

processing effect, which was applied to the main render target.

Feature Implementation

User Input

The game controls were bound to the keyboard with movement being set to the standard

WASD scheme. The G, V and B keys were used for next cellular automaton iteration, mini-

window display and blur toggle respectively.

In order to achieve this, an Input class was created to handle all the user’s input and pass the

information to the Game class (main class of the application). Using this approach, it was

easier to add extra input functionality during development. The input was then used to toggle

checks and enable the desired functionality in the Update method. With this information, the

camera view matrix was manipulated to present the new view each frame.

Cellular Automaton

The main feature of the developed game was procedural generation using cellular automaton

(CA). The idea behind CA is defined as a model of a system with cell objects having

characteristics identical to Conway’s Game of Life. A cell lives on a grid, were each cell has a

neighbourhood and a state, alive or dead (Shiffman, 2012). Depending on the neighbourhood

states, a new state is assigned to that cell. The rules are applied to the next generation of

cells.

Figure 2 - Conway's Rules for Game of Life

Grid creation was achieved by calling an initialisation function in the Grid class. The

initialisation function was responsible for populating a 2D cell matrix with randomly assigned

states. To take advantage of object-oriented programming, a Cell class was created to

describe a cell object and store its information. To randomly distribute and seed the cell

matrix with cells of different states, the built-in rand function was used. When creating a grid,

each cell was given either an alive or dead status.

In order to integrate gameplay with cellular automaton, the algorithm was modified to allow

player and treasure cells to be placed on the grid. Using an array of integers instead of

booleans provided more flexibility with cell state assignment. To ensure that the resultant

grid was suitable for the purposes of the game, checks were included to ensure that both the

player and the treasure cell have been placed in the labyrinth once. The next generation of

cells was calculated based on the neighbourhood of the current generation. As the grid is

based on a 2D matrix, Moore neighbourhood was used to retrieve the state of neighbouring

cells. With probability being used to seed the grid, it was necessary to implement a method

to ensure that the grid was solvable and that the player can reach the treasure. This was

achieved using A* pathfinding.

A* Search Algorithm

As the labyrinth was built using a 2D matrix which forms a grid, using A* pathfinding was a

natural choice. The unique aspect of this algorithm is the efficiency in finding the optimal path

based on the cost of each node or cell in this case ('A* Search Algorithm', 2016) . On each step

to find the target, the algorithm selects the node with the lowest value (f) of the sum of the

movement cost to move from the starting point to a given cell on the grid (g) and the

estimated movement cost to move from that given cell to the final destination on the grid (h).

In order to achieve this, the Cell class was modified to contain these new variables. A new

class named AStar was created. An AStar instance is initialised in Grid class and it is used to

check for solvability.

The implemented A* pathfinding in this project was based on A* Search Algorithm (2016),

with some minor modifications to integrate the existing codebase. In this approach, two lists

are created using the set data structure and boolean hash table for open and closed

respectively. Once the lists are initialised, the starting cell is placed on the open list and while

the open list is not empty:

1. Find the cell with the least f on the open list and call it q

2. Pop q off the open list

3. Generate q eight successors and set their parents to q

4. For each successor

a. If successor is target cell, stop search

b. Calculate successor g and h based on the sum of q.g value and distance
between successor and q, for g, and calculate h using distance from target cell
to successor. successor f is calculated by the sum of g and h

c. If cell with same position as successor is in open list which has a lower f value
than successor, skip

d. If cell with the same position as successor is in the closed list, having a lower f
than successor, skip this successor, else add the cell to the open list

endloop

5. Push q on the closed list

6. End while loop

The distance formula is calculated using Euclidean distance for approximation of h.

h = sqrt ((current_cell.x –target.x)*2 + (current_cell.z – target.z)*2)

As mentioned above, the resultant outcome from the A* algorithm is used to check the

solvability in the grid to ensure the labyrinth is solvable.

Post-Processing

The player has an option to toggle blur while playing. The effect was implement using post-

processing provided by DirectXTK library (Walbourn, 2018). In order to render the blur effect,

a render to texture target was initialised. A new method named Blur was created to render

the objects in the scene to a new RenderTexture target and to reset the render target to the

original back buffer. The post processing is applied after resetting the render target. This

allows more than one post-processing effects to be layered together before rendering the

final image.

Evaluation

The application managed to fulfil the objectives set out by the assessment brief. During

development, a great amount of time was spent thinking about class management and

hierarchy. Using C++ as a programming language facilitated both management and

optimisation. The code is well structured and well documented, highlighting the thought

process throughout the development of the game. In future work, an enhanced strategy for

collision checking can be introduced to check the current position of the player with the

nearest cell on the grid, and test against all active cells in that grid. Currently, collision

checking is takes into consideration the global coordinates and they are given to AABB testing

method.

With regards to the procedural generation content, implementing cellular automaton with

DirectXTK was a great challenge. However, the greatest challenge was ensuring that the

generated labyrinth was solvable. Although there were some issues with the implementation

of A* algorithm with the rest of the framework, the result is quite satisfactory. The ability to

manipulate the labyrinth by calling the next generation of cellular automaton create a fun

dynamic for gameplay.

Limitations

The game has a minor issue where the solvability of the grid is calculated on the old position

of the player in the grid. Therefore, it might be the case where in rare cases, the grid that is

generated is not solvable when the player cell has been changed. This was a design limitation

during the development of the game. Future work can focus on checking whether the grid is

solvable if the player has been moved due to grid regeneration in the case it is not solvable.

There is also a minor bug with player score which is most probably related to the same issue.

Reflection

During the development of this project, several lessons were learned, with the most

important being time management. The project can be split into three segments: cellular

automaton, A* pathfinding and research. Out of all three, most of the time was spent on

researching procedural generation in games. Cellular Automaton was chosen for its simplistic

understanding and various applications. Particularly, game development applications. They

can be used in tower defence games to calculate path from player and enemy bases and city

building simulators. The development process was a great test of skills and an opportunity to

gain a better understanding on the C++ language.

References

'A* Search Algorithm', (2016) GeeksforGeeks, -06-16T23:49:37+00:00. Available at:
https://www.geeksforgeeks.org/a-search-algorithm/ (Accessed: May 12, 2020).

Shiffman, D. (2012) The nature of code : [simulating natural systems with processing]. S.l.]:
Daniel Shiffman.

Walbourn, C. (2018) PostProcess. Available at:

https://github.com/microsoft/DirectXTK/wiki/PostProcess (Accessed: May 12, 2020).

https://www.geeksforgeeks.org/a-search-algorithm/
https://github.com/microsoft/DirectXTK/wiki/PostProcess

